

## Thermodynamics with superconducting circuits

#### Benjamin Huard

Quantum Electronics group Ecole Normale Supérieure de Paris, France





#### Team



Vlad Manucharyan (JQI Maryland)



**Pierre Rouchon** (Mines)



Alexia Auffèves (Grenoble)

#### Thermodynamics of quantum information



how to measure quantum trajectories?

## Cooling down a qubit

$$\Gamma_{\downarrow} = \Gamma_0 (1 + n_B)$$
$$\Gamma_{\uparrow} = \Gamma_0 n_B$$

$$n_B = \frac{1}{e^{\hbar\omega_q/kT} - 1}$$



## Cooling down a qubit

$$p_{e} = \frac{1}{1 + e^{\hbar\omega_{q}/kT}}$$

$$p_{g} = \frac{1}{1 + e^{-\hbar\omega_{q}/kT}}$$

$$\Gamma_{\downarrow} = \Gamma_{0}(1 + n_{B})$$

$$\Gamma_{\uparrow} = \Gamma_{0}n_{B}$$

$$\hbar\omega_{q} \longrightarrow \Gamma_{0}$$

$$n_{B} = \frac{1}{e^{\hbar\omega_{q}/kT} - 1}$$

## Cooling down a qubit

# How to get the qubit in its ground state?

Needed to evacuate entropy of errors in quantum codes

 $p_e = \frac{1}{1 + e^{\hbar \omega_q / kT}}$  $p_g = \frac{1}{1 + e^{-\hbar\omega_q/kT}}$  $\hbar\omega_q$  $\Gamma_0$ k'

## Various strategies in superconducting circuits

#### **Sideband cooling**

Additional drive so that





Measure and post-select

Single shot and QND measurement



[Johnson *et al.*, Berkeley group, PRL 2012; Ristè *et al.*, Delft group, PRL 2012]

## Various strategies in superconducting circuits



Cooling by varying  $\ \omega_q$   $\Gamma_\downarrow$ 

[Reed *et al.*, Yale group, APL 2010; Mariantoni *et al.*, UCSB group, Science 2011]

#### Cooling with a Maxwell demon



Experiments in classical regime S. Toyabe et al. (Tokyo) Nature Physics 2010 A. Bérut et al. (Lyon) Nature 2012 & EPL 2013 J. V. Koski et al. (Helsinki) arxiv 2014

Quantum version [Lloyd, PRA 1997]













## 2 examples with superconducting circuits

**Classical demon** Measurement feedback **Quantum demon** Autonomous feedback

#### Microwave quantum optics





# Superconducting circuits







## Superconducting circuits

dissipationless LC circuit...

....canonically quantized



ħω0
 #

$$\hat{H} = \hbar\omega_0(\frac{1}{2} + \hat{a}^{\dagger}\hat{a})$$



1st mode : 7.63 GHz  $Q\approx 10^6$ 

## Superconducting circuits with Josephson junctions

dissipation-less non linear LC circuit



$$\hat{H} = \frac{\hat{q}^2}{2C_J} - E_J \cos \frac{\hat{\phi}}{\hbar/2e} = \frac{\hat{q}^2}{2C_J} + \frac{\hat{\phi}^2}{2L_J} + H_{\text{non-lin}}(\hat{\phi})$$





transitions observed in 1980's [Berkeley & Saclay] strong coupling regime of CQED in 2004 [Yale]

#### Circuit-QED







#### 2 examples with superconducting circuits

Classical demon Measurement feedback **Quantum demon** Autonomous feedback

[Ristè *et al.*, Delft group, PRL 2012; Campagne-Ibarcq *et al.*, Paris group, PRX 2013]

[Geerlings et al., Yale group, PRL 2013]

$$H_{\rm coupl} = \hbar \chi a^{\dagger} a \frac{\sigma_Z}{2}$$

$$\omega_r = \omega_c - \chi/2 \qquad \checkmark$$
$$\omega_r = \omega_c + \chi/2 \qquad \checkmark$$



Phase encodes qubit state



#### closing the feedback loop: FPGA board



## Cooling down a qubit by measurement feedback



## Cooling down a qubit by measurement feedback



## Cooling down a qubit by measurement feedback





#### 2 examples with superconducting circuits

**Classical demon** Measurement feedback Quantum demon Autonomous feedback

[Ristè *et al.*, Delft group, PRL 2012; Campagne-Ibarcq *et al.*, Paris group, PRX 2013]

#### Photon resolved regime





$$H = hf_c a^{\dagger}a + hf_q |e\rangle \langle e| - h\chi a^{\dagger}a |e\rangle \langle e|$$

$$\int_{7.8 \text{ GHz}} 5.6 \text{ GHz} \qquad 4.6 \text{ MHz}$$

Qubit frequency depends on photon number Cavity frequency indicates qubit excitation T<sub>c</sub>=1.3 µs T<sub>1</sub>=12 µs T<sub>2</sub>=9 µs  $\chi \gg \frac{1}{2\pi T_c} \gg \frac{1}{2\pi T_2}$ 

 $f_q \mapsto f_q - \chi N$ 

 $f_c \mapsto f_c - \chi |e\rangle \langle e|$ 

#### Cavity as a qubit measurement apparatus

$$f_c \mapsto f_c - \chi |e\rangle \langle e|$$

Cavity frequency indicates qubit excitation (here 22% at eq.)





Demon measures qubit <



DRAG technique with 240 ns pulse
















[Geerlings et al., Yale group, PRL 2013]







# In a nutshell





Classical Maxwell demon Measurement-based feedback





#### Thermal baths coupled to a 3D transmon



#### Thermal baths coupled to a 3D transmon



## Purcell effect

$$\Gamma_1 = \Gamma_{\text{leak}} + \Gamma_{\text{loss}} + \Gamma_{\text{imp}}$$

Open cavity so that  $~~\Gamma_{leak}\gg\Gamma_{loss}+\Gamma_{imp}$ 



### Purcell effect from a quantum optics perspective

$$H_{JC} = \hbar g (a^{\dagger} \sigma_{-} + a \sigma_{+})$$

$$g \ll \Delta \qquad \frac{|g\rangle}{|e\rangle} \longrightarrow |-,n\rangle = |g,n\rangle - \frac{g}{\Delta}\sqrt{n}|e,n-1\rangle$$
$$|e\rangle \longrightarrow |+,n+1\rangle = |e,n\rangle + \frac{g}{\Delta}\sqrt{n+1}|g,n+1\rangle$$

$$\Gamma_{\text{leak}} = \kappa |\langle -, n | a | +, n + 1 \rangle|^2 = \left(\frac{g}{\Delta}\right)^2 \kappa$$



# Purcell effect from a microwave engineer perspective



$$\Gamma_{\text{leak}} = \frac{\text{Re}(Y[\omega_q])}{C_q}$$



[Reed et al., Yale group, APL (2010)]

### Purcell effect leads to fluorescence

 $\Gamma_{\text{leak}} \gg \Gamma_{\text{loss}} + \Gamma_{\text{imp}}$ 





Energy release can be measured directly

## Resonance fluorescence in frequency domain





 $\nu_{\rm cav} \approx 8 \ {\rm GHz} \quad \nu_{\rm q} \approx 5 \ {\rm GHz} \quad \Gamma_b \approx 0.25 \ {\rm MHz}$ 

 $\langle b_{out} \rangle = \langle b_{out} \rangle_0 - \sqrt{\Gamma_{\text{leak}}} \langle \sigma_- \rangle$ 

parasitic transmission

spontaneous emission into b line

 $\Gamma_{\rm leak} \approx \frac{-}{50 \ \mu \rm s}$ 

$$\sigma_{-} = |g\rangle\langle e| = \frac{\sigma_x - \imath\sigma_y}{2}$$





$$\overline{V_{\text{Re}}(t)} = \overline{V_{\text{Re}}^{(0)}(t)} - V_0 \text{Re}\langle \sigma_- \rangle \qquad s_-(t) \equiv \frac{V_{\text{Re}}(t) - \overline{V_{\text{Re}}^{(0)}(t)}}{V_0}$$

$$\overline{V_{\text{Im}}(t)} = \overline{V_{\text{Im}}^{(0)}(t)} - V_0 \text{Im}\langle \sigma_- \rangle \qquad s_-(t) \equiv \frac{V_{\text{Re}}(t) - \overline{V_{\text{Re}}^{(0)}(t)}}{V_0}$$

$$\overline{V_{\text{Im}}(t)} = \overline{V_{\text{Im}}^{(0)}(t)} - V_0 \text{Im}\langle \sigma_- \rangle \qquad \text{if qubit driven around Y}$$

$$\sigma_- = |g\rangle \langle e| = \frac{\sigma_x - i\sigma_y}{2}$$

$$qubit starts in |g\rangle$$





Similar oscillations were observed with pulsed driving in 2007



[Houck et al., Yale University, Nature 2007]



## Master equation



[Lindblad 1976]



Yes if considering the 1.6 MHz detector bandwidth

What can be said about single realizations?



Similar experiment: record weak meas of  $\sigma_z$  [Murch et al., Berkeley Group, Nature 2013]

What can be said about single realizations?



What can be said about single realizations?



What can be said about single realizations?

$$\frac{a}{V_{Im}(t)} \xrightarrow{\mathbf{e}} \frac{\mathbf{e}}{\mathbf{g}} \xrightarrow{\mathbf{r}} \frac{\mathbf{e}}{\mathbf{h}} \xrightarrow{\mathbf{r}} \xrightarrow{\mathbf{r}} \xrightarrow{\mathbf{r}} \frac{\mathbf{e}}{\mathbf{h}} \xrightarrow{\mathbf{r}} \xrightarrow{\mathbf{$$









### **Experimental verification**

How to check that prediction on  $\rho(t)$ ?

Measure  $\langle \sigma_X \rangle$ ,  $\langle \sigma_Y \rangle$ ,  $\langle \sigma_Z \rangle$  for a given trace  $\{V_{\rm Re}(t), V_{\rm Im}(t)\}$ 

Problem: ∞ time to get the same traces many times



## Reproducible quantity

How to check that prediction on  $\rho(t)$ ?

Measure  $\langle \sigma_X \rangle$ ,  $\langle \sigma_Y \rangle$ ,  $\langle \sigma_Z \rangle$  for a given trace  $\{V_{\rm Re}(t), V_{\rm Im}(t)\}$ 

Problem: ∞ time to get the same traces many times



# Reproducible quantity

How to check that prediction on  $\rho(t)$ ?

Measure  $\langle \sigma_X \rangle$ ,  $\langle \sigma_Y \rangle$ ,  $\langle \sigma_Z \rangle$  for a given trace  $\{V_{\rm Re}(t), V_{\rm Im}(t)\}$ 

Problem: ∞ time to get the same traces many times

One solution  

$$\zeta_X \equiv \frac{\langle \sigma_X \rangle_{\rho}}{1 + \langle \sigma_Z \rangle_{\rho}} \qquad \zeta_Y \equiv \frac{\langle \sigma_Y \rangle_{\rho}}{1 + \langle \sigma_Z \rangle_{\rho}} \qquad \underbrace{m_X(t)}_{\mathbf{F}} = e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})t/2} \zeta_X(t) - \zeta_X(0) = \sqrt{\frac{\eta}{2}} \Gamma_{\text{leak}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Re}} d\tau$$

$$e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})t/2} \zeta_Y(t) - \zeta_Y(0) = \sqrt{\frac{\eta}{2}} \Gamma_{\text{leak}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Im}} d\tau$$

H V Y



$$m_X(t) = \sqrt{\Gamma_{\text{leak}}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Re}} d\tau$$

![](_page_67_Figure_1.jpeg)

$$m_X(t) = \sqrt{\Gamma_{\text{leak}}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Re}} d\tau$$

![](_page_68_Figure_1.jpeg)

$$m_X(t) = \sqrt{\Gamma_{\text{leak}}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Re}} d\tau$$

![](_page_69_Figure_1.jpeg)

$$m_X(t) = \sqrt{\Gamma_{\text{leak}}} \int_0^t e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})\tau/2} V_{\text{Re}} d\tau$$

#### Correlation between m and tomography

![](_page_70_Figure_1.jpeg)

#### Correlation between m and tomography

![](_page_71_Figure_1.jpeg)
## Correlation between m and tomography



## Quantum efficiency



 $e^{-(\Gamma_{\text{leak}} - 2\Gamma_{\varphi})t/2}\zeta_{X,Y}(t) - \zeta_{X,Y}(0) = \sqrt{\eta/2}m_{X,Y}(t)$ 

## Thermodynamics with quantum trajectories



What can be said about the thermodynamics of all these quantum trajectories?

Next: tunable qubit frequency quantum work statistics

## Thanks





Vlad Manucharyan (JQI Maryland)



Mazyar Mirrahimi (INRIA)



Pierre Rouchon (Mines)

**Pierre Six** 

(Mines)



Alexia Auffèves (Grenoble)



