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 Attractive force (negative pressure)

A universal effect from confinement of vacuum energy,
which depends only on ћ, c, and geometry

H.B.G. Casimir, Proc. K. Ned. Akad. Wet. (Phys.) 51 (1948) 79

 Written here in an idealized case
 Perfectly parallel plane mirrors 
 Perfectly reflecting mirrors
 Zero temperature

The ideal Casimir forceThe ideal Casimir force



The real Casimir force

 Non ideality of surfaces
 Roughness, electrostatic patches, contamination …

 Experiments performed with Gold-covered plates 
 Force depends on non universal reflection properties 

of the metallic plates used in the experiments

 Experiments performed at room temperature
 Effect of thermal and vacuum field fluctuations 

have to be taken into account

“Casimir Physics”, Lecture Notes in Physics 834 (Springer-Verlag, 2011)

 Effect of geometry
 Most precise experiments performed 

in the plane-sphere geometry 



Radiation pressure of quantum fluctuations

 « Quantum Optics » approach
 Quantum field fluctuations (vacuum and thermal fluctuations) 

pervade empty space → radiation pressure on mirrors
 Force = pressure balance between 

inner and outer sides of the mirrors

 « Scattering theory »

 Mirrors = scattering amplitudes depending
on frequency, incidence, polarization

 Solves the high-frequency problem
 Gives results for real mirrors
 Can be extended to other geometries

 Many ways to calculate the Casimir effect

A. Lambrecht, P. Maia Neto, S. Reynaud, New J. Physics 8 (2006) 243
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 Quantum field theory in 1d space
 Counterpropagating scalar fields
 Point-like mirrors


in

 Fabry-Perot cavity
 Outer energies are the same as in the 

absence of the cavity (Unitarity of scattering)
 Inner energies are enhanced for resonant modes, 

decreased for non-resonant modes ( Cavity QED)

: reflection amplitudes on mirrors

A simple derivation of the Casimir effectA simple derivation of the Casimir effect

M.-T. Jaekel & S. Reynaud, J. Physique I-1 (1991) 1395 

 Energy enhancement due to 
cavity confinement



The Casimir force as a radiation pressure
 The Casimir force is the difference between inner and outer 

radiation pressures summed over all field modes

 The Casimir force can also be written in terms of causal amplitudes

Cavity confinement 
effect

Field fluctuation energy in the
counter-propagating modes at frequency  Planck law 

+ vacuum energy



Casimir free energy and phase-shiftsCasimir free energy and phase-shifts

M. Jaekel & S. Reynaud, J. Physique I-1 (1991) 1395 quant-ph/0101067

 Casimir force obtained from the free energy 
through a differentiation wrt L

 with

 Casimir free energy can be written as a difference between 
changes of free energies calculated for different configurations

Mirror 1 or 2
alone

Cavity
(mirrors 1 and 2)



The phase-shift interpretation

 In fact, each such quantity is itself a difference of free energies 
calculated in the presence and in the absence of the scatterer

 In the end, the Casimir free energy is a “double difference”
involving four different configurations

 Each of these free energies is given by the phase-shifts for the 
S-matrix associated with the scattering configuration

Similar expression for configurations with mirrors 1 and 2 alone



 Casimir pressure obtained as

 Derivation similar to that in the 1-d case

Casimir effect between two planesCasimir effect between two planes
specular reflection 

depending also on k, p



Casimir effect and thermodynamics

… and an “internal energy”

 From the free energy, one 
derives the force

 Usual thermodynamical relations are valid

… as well as an entropy 



 Reflection amplitudes on each mirror given by Fresnel laws

E.M. Lifshitz, Sov. Phys. JETP 2 (1956) 73

and 
longitudinal
wavevectors

in matter
and vacuum

Model for reflection amplitudes 

M. Jaekel & S. Reynaud, J. Physique I-1 (1991) 1395 quant-ph/0101067

I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Sov. Phys. Uspekhi 4 (1961) 153

 Lifshitz model (1956)
 bulk mirror (very thick slab) 
 local dielectric response function



 Simple models for the (reduced)
dielectric function for metals
 bound electrons 

(inter-band transitions,
tables of optical data)

 conduction electrons  
 determined by (reduced) conductivity σ

 Drude model for conductivity
 plasma frequency ωP

 relaxation parameter γ

Models for metallic bulk plates

 Drude parameters related to the 
density of conduction electrons and 
to the static conductivity
 finite conductivity σ0  non null γ

A. Lambrecht & S. Reynaud, Eur. Phys. J. D8 309 (2000)
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G. Ingold, A. Lambrecht & S. Reynaud, Phys. Rev. E80 (2009) 041113

Pressure between metallic mirrors (room T)

 Imperfect reflection
 Non zero temperature

M. Boström and B.E. Sernelius, 
Phys. Rev. Lett. 84 (2000) 4757

Negative contribution 
of thermal photons at 

intermediate distances 
for the Drude model

 Pressure different from the 
ideal Casimir formula

Small losses lead to a 
large factor 2 at 
large distances



 Interaction entropy found to be negative for 
intermediate products temperature * length

G. Ingold, A. Lambrecht & S. Reynaud, Phys. Rev. E80 (2009) 041113

Interaction entropy for metallic mirrors



R.S. Decca, D. Lopez, E. Fischbach et al, Phys. Rev. D75 (2007) 077101

Courtesy 
R.S. Decca et al

(IUPUI)

Purdue measurements agree with predictions from the plasma model 
but deviate from predictions with dissipation accounted for ! 

Theory with the Drude model

Theory with the plasma model

Experiment

Measurements on micro-torsion resonatorsMeasurements on micro-torsion resonators



Experimental data kindly provided by R. Decca (IUPUI)
Theoretical pressure calculated by R. Behunin et al PRA 85 (2012) 012504

Difference of experimental 
and theoretical pressures

Theory : optical data for Gold, 
extrapolated to the Drude
model when →0

Measurements versus theory



 Reflection matrices on the plane written as Fresnel 
amplitudes in the plane waves basis

 Reflection matrices on the sphere written as Mie 
amplitudes in the spherical waves basis

 Transformation from plane to spherical waves (for electromagnetic fields) 

 We obtain an “exact” multipolar expansion of the energy 
o Spherical waves labeling :

o Sums truncated for the numerics

o Results accurate for

 General scattering formula with big matrices 
mixing wavevectors and polarizations

Plane-sphere geometryPlane-sphere geometry

A. Canaguier-Durand, P.A. Maia Neto, I. Cavero-Pelaez, A. Lambrecht, 
S. Reynaud, PRL 102 (2009) 230404



A. Canaguier-Durand, P.A. Maia Neto, A. Lambrecht, S. Reynaud 
PRL 104 (2010) 040403

plasma

plasma

perfect

perfect

 Force between plane and spherical perfect 
reflectors at room or zero temperature
 Drawn as the ratio 
of force at T≠0
to force at T=0
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analytic Contribution of thermal 

photons repulsive at 
intermediate distances !

Correlation geometry - temperature 
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A. Canaguier-Durand, P.A. Maia Neto, A. Lambrecht, S. Reynaud 
PRA 82 (2010) 012511

 Analytical expressions 
available for small spheres
(dipolar approximation)

 Casimir entropy negative 
at some distances,
for perfect mirrors here

 Features not seen for 
perfect plane mirrors

Casimir entropy in the plane-sphere case
 Casimir entropy at room temperature computed 
between perfectly reflecting sphere and plane, as 
a function of separation distance
 Drawn after division 
by the volume of the sphere



K. Milton, R. Guérout, G.-L. Ingold, A. Lambrecht, S. Reynaud, 
accepted for the special issue on Casimir Forces of JPCM : arXiv/1405.0311

 Negative interaction entropies 
obtained in many different 
configurations
 Example of the interaction 

between two identical 
nanoparticles

Negative Casimir-Polder entropies in 
nanoparticle interactions
 Systematic study for the interaction with planes or between them of 
atoms or nanoparticles, in the limit R→0 (dipolar approximation)

 No contradiction with the 
principles of thermodynamics

 Phenomenon not exceptional
 In fact it is nearly ubiquitous

Variation of the 
ratio of the E to 
M polarizability


