

Information thermodynamics in a hybrid opto-mechanical system

<u>Cyril Elouard</u>, Maxime Richard, Alexia Auffèves Team NPSC, Neel Institute – CNRS, Grenoble, France

Workshop hbar-kb, Grenoble, Sept. 29th – Oct. 1st 2014

Maxwell's demon paradox

J.C. Maxwell - 1871

The demon's memory

neel.cnrs.fr

The demon's memory

neel.cnrs.fr

Where Shannon's entropy of the bit is:

$$H = -P_1 \log_2 P_1 - P_0 \log_2 P_0$$

(in bits)

CINIS

Landauer's Erasure of a bit

$$H_i = 1 \longrightarrow H_f = 0$$

Work required W

Landauer's principle

$$W \ge W_0 = kT \ln 2$$

Rolf Landauer

Landauer's Erasure of a bit

 $H_i = 1 \longrightarrow H_f = 0$

Work required W

If the erasure is a *reversible* (very slow) transformation:

Rolf Landauer

Szilard 's engine

Rolf Landauer

$H_i = 1 \longleftarrow H_f = 0$

Work *extracted* W

If the erasure is a *reversible* (very slow) transformation:

Leo Szilard

$W_0 = kT \ln 2$ is the elementary work corresponding to 1 bit of information

If information becomes quantum...

Alice's point of view

Global point of view

 $\operatorname{Tr}_{B} \rho_{AB} = \mathbb{I}/2$

Maximally mixed state, no work extraction possible

Pure state, H = 0

Can perform a Szilard engine and convert the information into work

→ Many theoretical results linking work to quantum correlations, discord, entanglement...

L. del Rio et al., Nature 474, 61--63 (2011) Oppenheim, Horodecki, PRL 89 (2002) Zurek, PRA 67 (2003)

Experimental verification of this theorems remains elusive...

Need of a proper setup in which:

- Some qubits exchange work with a battery, heat with a bath.
- Work exchanges can be measured.

Experimental difficulties:

- Reaching reversibility
- Ultrafast QND measurement to get the qubit trajectory

Implementations only with a <i>classical bit</i>	
Toyabe, S. et al., Nature Physics 6, 988992 (2010)	(Irreversible) Szilard engine
Bérut et al., Nature 483,→ 187-189 (2012)	Reversible Landauer's erasure

Experimental difficulties:

- Reaching reversibility
- Finding a battery which can be easily monitored

Experimental difficulties:

- Reaching reversibility
- Finding a battery which can be easily monitored

Idea: using a mechanical oscillator coupled to the qubit!

neel.cnrs.fr

• I) Measuring work in a hybrid optomechanical system

• II) Information to energy conversions in a thermal bath

• III) Information to energy conversions in a driven system

Hybrid optomechanical set up

Set up : nano `trumpets'

I.Yeo et al., Nature Nanotechnology 9, 106–110 (2014)

Thermal bath : Electromagnetic reservoir

Qubit: Artificial atom (Quantum dot).

Strain-mediated coupling

Fluorescence spectroscopy of the embedded atom

Atomic frequency variation $\omega_q(t) - \omega_0$ (µeV)

Source: I.Yeo et al., Nature Nanotechnology 9, 106–110 (2014)

Paradigmatic erasure protocol

t = 0

ÎÉFI

Paradigmatic erasure protocol

t = 0

Work performed by the operator while raising one of the states

$$W(t) = \int_0^t P(E) \, dE$$

Population of the state

 $t = t_f$

Szilard engine protocol

The qubit is in a known state and isolated from the bath

t < 0

Szilard engine protocol

The empty state is raised with no work cost

t < 0

Szilard engine protocol

The qubit is put in equilibrium with the bath

t = 0

Szilard engine process

 $0 < t < t_{f}$

Szilard engine process

 $0 < t < t_{f}$

Partial conversion

General formula for reversible work cost

$$-Q_{L} = W_{L} - \Delta U_{L} = kT(H_{f} - H_{i})$$
 (Clausius' Law)

internal energy of the bit: $U_L = P(E) E$

 $H_f > 0$ bit

Modelling

Hamiltonian:

If the oscillator and the qubit are connected to a thermal bath:

$$\dot{
ho} = \mathcal{L}_m
ho + \mathcal{L}_{int}
ho + \mathcal{L}_q
ho$$

Damping Γ_m \uparrow Damping γ
of the oscillator of the qubit

Semi-classical regime

Hamiltonian:

If the oscillator and the qubit are connected to a thermal bath:

 $g_m << \gamma$ semi classical regime

The correlations between oscillator and qubit die quicker than they are created !

Expansion to first order in $\varepsilon = g_m / \gamma$:

$$\begin{cases} \dot{P}_e(t) = -\gamma(2\bar{n}+1)P_e(t) + \gamma\bar{n} \\ \dot{s}(t) = -ig_m(\beta(t) + \beta^*(t))s(t) - \frac{\gamma}{2}(2\bar{n}+1)s(t) \\ \dot{\beta}(t) = -i\Omega\beta(t) - ig_mP_e(t) - \Gamma_m\beta(t) \\ \dot{N} = -ig_mP_e(t)(\beta^*(t) - \beta(t)) - \Gamma_mN + \Gamma_mn_m \end{cases}$$

qubit population
$$P_e = \frac{\langle \sigma_z \rangle + 1}{2}$$

qubit dipole $s = \langle \sigma_- \rangle$

Mech. amplitude $\beta = \langle b \rangle = x + ip$ Mech. population $N = \langle b^{\dagger}b \rangle$

Wallquist et al., New J. Phys, 10, 095019 (2008) Rabl, Phys. Rev. B 82

Expansion to first order in $\varepsilon = g_m / \gamma$:

$$\begin{cases} \dot{P}_e(t) = -\gamma(2\bar{n}+1)P_e(t) + \gamma\bar{n} \\ \dot{s}(t) = -ig_m(\beta(t) + \beta^*(t))s(t) - \frac{\gamma}{2}(2\bar{n}+1)s(t) \\ \dot{\beta}(t) = -i\Omega\beta(t) - ig_mP_e(t) - \Gamma_m\beta(t) \\ \dot{N} = -ig_mP_e(t)(\beta^*(t) - \beta(t)) - \Gamma_mN + \Gamma_mn_m \end{cases}$$

Effective atomic frequency: $\omega_q(t) = \omega_0 + \frac{g_m}{x_{zpf}} x(t)$

Mechanical energy variation: $\Delta E_m = \hbar \Omega \Delta N = -\hbar \int P_e(t) d\omega_q(t) = -W(t)$

The oscillator stores work in its own mechanical energy !

Effective atomic frequency:
$$\omega_q(t) = \omega_0 + \frac{g_m}{x_{zpf}} x(t)$$

Mechanical energy variation: $\Delta E_m = -\hbar \int P_e d\omega_q = -W(t)$

→ Deflexion measurement enables to measure the average work directly in that setup !

• I) Measuring work in a hybrid optomechanical system

• II) Information to energy conversions in the hybrid system

• III) Information to energy conversions in a driven system

Implementation with the hybrid system // EEL Chrs

At t=0, we kick the oscillator and let it evolve ...

Implementation with the hybrid system // ÉEL Chrs

N.B.: at T = 4K, kT = 80 GHz

Implementation with the hybrid system // EEL Chrs 📲

Implementation with the hybrid system

Implementation with the hybrid system

Heat exchange for different initial kicks and different temperatures

ÍÉEL

Implementation with the hybrid system

Heat exchange for different initial kick and different temperature

Conclusion

- Reversible cycles of information-to-energy conversions with realistic parameters!

- Restriction: oscillator elastic regime $|\omega_q(t)-\omega_0| << \omega_0$ \rightarrow Only incomplete erasures $|\Delta H| < 1 \dots$

• I) Measuring work in a hybrid optomechanical system

• II) Information to energy conversions in the hybrid system

• III) Information to energy conversions in a driven qubit

An optical version of the erasure protocol

 γ spontaneous emission rate of the qubit g classical Rabi frequency (intensity of the laser) δ qubit-laser detuning (frequency difference)

 γ spontaneous emission rate of the qubit g classical Rabi frequency (intensity of the laser) δ qubit-laser detuning (frequency difference)

Qubit steady-state

For a fixed δ , after a time $1/\gamma$, the population of the excited state is in steady state:

$$P_e^{ss}(\delta) = \frac{1/2}{1 + (\delta/g)^2}$$

$$\neq P_e^{e^q}(\delta) = \frac{e^{-\hbar(\omega_0 + \delta)/kT}}{1 + e^{-\hbar(\omega_0 + \delta)/kT}}$$
$$= 0 \text{ at zero temperature}$$

Adiabatic condition: $\Omega << \gamma$

Then the qubit remains in the steady-state

$$P_e^{ss}(\delta) = \frac{1/2}{1 + (\delta/g)^2}$$

Minimum work to bring the qubit out of resonance adiabatically

$$W_L = \hbar \int_0^\infty P_e^{ss}(\delta) d\delta$$

Strong analogy with Landauer's minimal work W₀

Fast mechanical oscillations: $\Omega \sim \gamma$

$$P_e(t) \neq P_e^{ss} = \frac{1/2}{1 + (\delta/g)^2}$$

More work needed to erase the qubit fast

$$W = \hbar \int_0^\infty P_e(\delta) d\delta > W_L$$

Strong analogy with Landauer's minimal work W₀

See Steady-state thermodynamics formalism, e.g. : Esposito et al., Phys. Rev. E 76, 031132 (2007) Oono et al., Progr. of Theor. Physics Supp. No. 130, 1998

- The right side of the plot is very similar
- Behaviour is different for negative detuning

A new value of the elementary work

Thermal bath

Optical bath

$$W_0 = kT \ln 2 \quad \longleftrightarrow$$

$$W_L = \hbar \int_0^\infty P_e(\delta) d\delta = \hbar g \frac{\pi}{4\sqrt{2}}$$

Rabi frequency (laser intensity)

Implementation

At t=0, we kick the oscillator and let it evolve ...

neel.cnrs.fr

Typically W_L corresponds to:

 $\Delta x = 0.4 \text{ pm}$ Amplitude: 1.2 pm Signal/Shot noise = 40 Signal/Thermal noise = 0.3

(g = 3 GHz, g_m = 30 MHz, $\beta_0 = 10^2$, $\Omega/2\pi = 550$ kHz, T = 100 mK)

→ Measurable with current deflexion techniques
B. Sanii et al. PRL 104 (2010)

Variation of $|\beta|$ when leaving or coming in resonance \rightarrow exchange of work

Variation of $|\beta|$ when leaving or coming in resonance \rightarrow exchange of work

- A set up enabling reversible information-to-energy conversion in a qubit
 - In contact with a thermal Bath
 - Driven by a laser
- Direct observation of work exchanges in a quantum battery
- Application: optical Carnot engine reaching maximum efficiency

More details in: <a>arXiv:1309.5276

Perspectives

I.Yeo et al., Nature Nanotechnology 9, 106–110 (2014)

Now that the building blocks Landauer's erasure & Szilard engine are ensured, we can go to the fully quantum regime

Ex: erasure cost of two

L. del Rio et al., Nature 474, 61--63 (2011)

Oppenheim, J. et al., PRL 89, 180402 (2002)

entangled qubits

O. Arcizet et al., Nature Physics 7 (2011) 879

Thank you for your attention

 $W_L = \hbar g \, \frac{\pi}{4}$

More details in: CE, Maxime Richard, Alexia Auffèves, arXiv:1309.5276

neel.cnrs.fr

Second quarter of oscillation Szilard's engine

cnrs

Optical Carnot engine

$$W_{stored} = -\hbar g \,\frac{\pi}{4} + \hbar g \,\frac{\pi}{4} + \hbar g \,\frac{\pi}{4} - \hbar g \,\frac{\pi}{4} = 0$$

Optical Carnot engine

$$W_{stored} = \left[-\hbar g_1 \frac{\pi}{4} + \hbar g_2 \frac{\pi}{4} + \hbar g_2 \frac{\pi}{4} - \hbar g_1 \frac{\pi}{4}\right] > 0$$

Carnot efficicieny in finite time

$$\eta = 1 - g_2 / g_1$$
$$\iff \eta_C = 1 - T_2 / T_1$$

Carnot ideal efficiency reached with realistic parameters!

Carnot efficicieny in finite time

Carnot ideal efficiency reached

$$\eta = 1 - g_2 / g_1$$

$$\iff \eta_c = 1 - T_2 / T_1$$

 $\mathcal{P} = \mathbf{10}^{-17} \text{ W}$

3 order of magnitudes over existing proposals of single qubit heat engines

O. Abah et al., PRL 109, 203006 (2012).

1st cycle: Landauer's erasure + Szilard engine

2nd cycle: *inverse* Landauer's erasure + *inverse* Szilard engine

