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‘Single-shot thermodynamics’ meets ‘Crooks fluctuation theorem’

1. By Crook’s fluctuation theorem | mean

Prwa(W) SBW—AF)

P?“efv(_W)

(I will define the terms later.)

2. Single-shot statistical mechanics is an approach to non-equilibrium statistical
mechanics focussing on behaviour that is guaranteed to occur each realization
(‘shot’) of an experiment, as opposed to average behaviour. It is inspired by
single-shot information theory.

Key message: They are concerned with the same scenarios and quantities, so
insights from one can be applied to the other.



Overview

1. General intro to single-shot stat. mech.

2. General intro to Crooks fluctuation theorem.
Key claim: W and P(W) used in the respective results refer to the
same quantities in the game.

3. The setting for W and p(W): level-shifting work extraction protocols (games).
4. Crooks from this setting
5. Single-shot statements in this setting

6. Initial examples of advantages of link: theory and experiment.



General Intro to single-shot statistical
mechanics

“Look, if you had one shot, or one opportunity

To seize everything you ever wanted.

One moment

Would you capture it or just let it slip?” Eminem



The amount of work out is not always certain.

e Consider a system in an energy level. Suppose you use a battery system to
change that level by 0 E. The change in the battery systems energy is called
work, oW = —oF.

OF = —oW
-9- I

e Note also that shifting an unoccupied energy level costs no work.

e Now suppose there are several levels, and you do not know the which is occu-
pied fully. As you lift/lower the i-th levels by dF;, there is now a probability
distribution over work p(W).



Work guaranteed in every single shot

e Consider the guaranteed work for a given p(W): We(P(W)).

e This is guaranteed (up to probability ) to be extracted each and every run,
every ‘shot’. Its the sort of thing we study in single-shot statistical me-
chanics.

p(w)

e Wy o u

e Why care? Suppose your engine needs to provide a certain amount of work
e.g. as an activation energy, or that it cannot dissipate more than a certain
amount of heat without breaking something. Then guaranteed behaviour
rather than average is what matters.



What can we calculate in single-shot approach?

e Various papers have calculated
the optimal guaranteed™®) work for given
initial and final energy levels, and
initial and final states.

e The optimisation is over
all Hamiltonian paths and
thermalisations, for the
given initial and final conditions.

*) Actually some are concerned with
deterministic work, where one
demands the work output distribution
is fully concentrated around one value.



What can we calculate in single-shot approach?

More and more general expressions for the optimal e-guaranteed work.

We(p,H; =0—=>~yp,Hf =0) = (n— Hj

max

(p)) kT In 2
H;: initial Hamiltonian, p: initial state; 7, thermal state, H¢: final Hamiltonian.

We(psar, Hi = 0 — |0Y(0| @ pag, H; = 0) = HE__(S|M)ET In 2(+log....)

max

We(p, H; — v, H;) = KT In(2)Dg(p||vr)

We(p,H; — o, Hs) = kT In (M (?T( )HGT( )))

What are these quantities on the RHS? They are quantities from (or given to)
single-shot information theory.



Single-shot information theory entropies

o H,.x(p) = log(|supp(p)]) (and another single shot entropy H,ni, = log(——)).

Pmax

e An important operational meaning of H,.x is that it is the size a memory
needs to have to reliable retain information. Not on average in some sense
but in a given experiment. It is called a single-shot entropy.
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Smoothing

Smoothing entropies

e Recall that there was also an € on the entropies in the earlier slide, e.g.
W(p,H; =0 — ~yr,Hy =0) = (

e An important technique is to smooth a distribution before evaluating the
entropy. This gives the smooth entropy

(p) := min Hyax (p') |d(p, p') <

If d(.,.) is the trace distance the smoothing looks like this.

g

e
I —

’ 0.2

e Interpretation: the entropy is effectively

e One reason smoothing important: lim(n — oo, — 0)

n—H: .,  (p)kTIn2

[T

nH (p)



Papers to date on this approach

Inadequacy of von Neumann entropy Dahlsten, Renner, Rieper, 0908.0424 NJP

for characterizing extractable work Vedral
Thermodynamic meaning of negative del Rio, Aaberg, Renner, 1009.1630 Nature
entropy Dahlsten, Vedral

Fundamental limitations for quantum Horodecki, Oppenheim 1111.3834 NCOMMS
and nano thermodynamics

Truly work-like work extraction Aaberg 1110.6121 NCOMMS
The laws of thermodynamics beyond Egloff, Dahlsten, Renner 1207.0434

the von Neumann Regime and Vedral

A quantitative Landauers Principle Faist, Dupuis, 1211.1037v1

Oppenheim, Renner

The resource theory of informational Gilad, Muller, Narasim- 1309.6586v1
non-equilibrium in thermodynamics  hachar, Spekkens,
Yunger-Halpern



Papers to date on this approach, cont’d

Tide JAuhos _______laXiv____lloumnal _

The second laws of quantum Brandao, Horodecki, Ng, 1305.5278
thermodynamics Oppenheim, Wehner

Non-equilibrium Thermodynamics Dahlsten Entropy,
inspired by Modern Information Maroney
Theory (a soft intro) Ed.
Guaranteed energy efficient bit reset Browne, Garner, 1311.7612 PRL

in finite time. Dahlsten, Vedral

Unifying fluctuation theorems and Yunger-Halpern, 1409.3878

single-shot statistical mechanics Dahlsten, Garner, Vedral

There are now more papers which | have not had a
chance to read and add here



Quick recap of Crooks theorem



Crooks theorem on fluctuations of work

Crooks fluctuation theorem is that under certain assumptions

Prywa (W)

Prev(_W)

W work output

Prwa(W): probability
distribution of work for a given path
the Hamiltonian in one direction

Prev (W) for Hamiltonian
taking the reverse path

AF': the free energy difference
between two thermal states

at the beginning and end
points of the Hamiltonian path.

-

_ SW-AF)

WD Process

REW Process

+




Why look for a link between the two?

e Single-shot approach can benefit from the wide range of theoretical and ex-
perimental papers relating to fluctuation theorems.

e Fluctuation results can be linked to modern (I mean single-shot) information
theory as well as the move away from entropy to majorisation as the central

object of thermodynamics.

Non-equilibrium
stat mech

Single-shot
information
theory

Single-shot
stat/mech



Key link: p(w) in single-shot papers represents
same physical thing as that in Crooks scenario.

Prwoa(W)  gow—ar
p(w) Proo (—TV) e ;

* | will now explain a work extraction model before showing
how Crooks and single-shot results both apply in that model.



The setting for W, p(W) -in pictures

e Consider a system in an energy level. Suppose you use a battery system to
change that level by 0 E. The change in the battery systems energy is called
work, oW = —0F.

OF = —oW
-9- I

e Note also that shifting an unoccupied energy level costs no work.

e Now suppose there are several levels, and you do not know the which is occu-
pied fully. As you lift/lower the i-th levels by dF;, there is now a probability
distribution over work p(W).

e There are also thermalisations, hopping the system between levels, doing no
work.



The setting for W, p(W)- in writing

Hamiltonian function of A,,, m is time step. System undergoes two alternating
changes:

1. Hamiltonian changes. Take A\, — Ap11, energy level invariant™®, ie. |i,, Apy) —
|%ns Amt1). This costs work 6W = E(|in, Am+t1) — E(|in, Am)).

2. Thermalisations. No work cost: dW = 0. They hop system around levels,
without altering A. Assume thermal detailed balance respected:

p(‘ina)\m> — |in+1a/\m>)
p(|in+1a)\m> — ‘3na)\m>

— €Xp _5 (E(lin-i—la /\m> - E|’Ln, Am)) .

System then evolves according to a (random) trajectory:
|2'07)\0> — |Z'07)\1> — |?:1,)\1> — |if_1,)\f>...|if,)\f>.

In the forwards (reverse) direction the initial state is thermal w.r.t. the Hamiltonian
associated with Ag (A¢).
*) Quantumly superpositions may arise, see later slide.



Why one might think of Crooks theorem here

p(traj) — p(|i09)\0>7|i19)\1>7"'7|if7/\f>)
= p(|i0, Xo))p(|t0, A1) — [i1, A1)).e.p([ig—1, Ap) = |if, Af)));

p(traj —inv) = p(lig, A\f),|if—1,Ar=1), ..., [P0, Ao))
= pllig, \p))pligs Ap) = lig—1,Ap))...p(|i1, A1) = [io, A1)));

Hmmm, will many of these things cancel or become something neat if we take the
ratio?
Especially if we assume the thermalisations respect detailed balance:

p(lio, A) = i1, A))
p(li1, A) = lio, A))

= exp(—B(E(ip) — E(i1)))



Crooks holds in this set-up (1/2)

p(traj)

p(traj — inv) -

—p(lio, M) p(lio, A1) = i1, A1) ..p(ig—1, Ag) = |ig, Ap)))
pig, Ag)) p(lig, Ag) = lig—1, Af))..p(|i1, M) = |20, A1)))
p(Ji0, X)) p(lio, A1) = i1, A1) p(Jip—1, Af) = |ig, Af))
p(ig, Ap)) p(lin, A1) = lios A1) p(lig, Ap) = lig—1,Ap))
D20 exp—A (B (i1, M) = Elio: A)) - exp = (E(lis Ay
exp —BE(|io, X))/ Zo

exp —BE(|if, Af))/Z¢

Zf

exp — S ([E(lio, Ao)) — Elio, A1)] + [E(li1r, A1) — E(li1, A2)] ...

where W denotes the work of a given trajectory.

— Elig_1,5))

eXp —6 (E(|’Ll, )\1) — E"io, )\1>) ... €XP —ﬁ (E(”Lﬁ )\f}—E|’if_1, )\f:

[E(|ig, Ap—1))—Elif, Ay,



Crooks holds in this set-up (2/2)

e To recover standard formulation of Crooks with LHS: pfy,a(W)/pres (—W).

e Let W be set of trajectories with work gain W.

e Note that the set of reverse trajectories with work -W are precisely the inverse
trajectories of those in W:

p(W) _ ZtrajEW p(tra])
p(=W) 2 trajew P(traj — inv)
_ ZtrajEW p(tfra,j)
Ztrajew P(tmj)g—? exp(—BW)
Z
= “Lexp(pW)



Quantum extension of model: superposition problem

Say system in |i,, A,). Suddenly A\, — A, +1. State is now |[i,, A,) which is
not necessarily an eigenstate for A, 1, it is in general a superposition of the new
energy eigenstates.

Simple example: |ig, Ag) = |0).
H{(Ao) = 0[0)(0[ +-0[1) (1] = H (A1) = [+){+] = | =) (|

Suddenly A\g — Ai: the state |0) has no time to evolve. We no longer have an
energy eigenstate, but a superposition of energy eigenstates

0} = [+) + [=) = lio, A1) + [ia, Ar)

It is ambiguous how to define the work of trajectories involving such states, but
there is a trick...

(notation: |[+) =(0) + |1), |—) =|0) — [1) )



Quantum extension of model, Quan-Dong style

Quan-Dong trick to deal with superpositions: measure energy at end of each
Hamiltonian change. This gives a new type of hop with transition probabilities:
|<Z;w )\n%—l‘U‘im )\n>|2-

The reverse process is carefully defined so that the probability of the reverse jump
In the reverse process equals that of the forwards jump above.

Thus p(t]f«g;gzw) is unaffected by this modification.

The work cost can be different as dW = E(|il, An+1) — E(|in, An)). Same
argument carries through though, so that

D) = exp(=B(Fy - Fo) = W),

and the last summation over trajectories also follows through, so Crooks holds also
after this quantum modification.



Single-shot statistical mechanics also uses this setting

- The setting just described is also that used* for single-shot paper by Egloff et. al.
(setting similar to [Aberg], [delRio et. al], all leaning on [Alicki and Horodecki®?]).

- In that language there is an agent engaged in a work-extraction game.

- The agent chooses the Hamiltonian path, and which interactions with the heat-
bath to include when. This choice is called the agent’s strategy Str.

PSF.',T'.:I-‘},' ('U_J)

- The strategy Str and
initial state p; together
induce a work probability
distribution Psy, ,. (w),
precisely as described here.

*) detailed balance is not A
always required but rather a 5

weaker condition. We <”r> g W
A »



Single-shot statistical mechanics in this setting

Recall that | flashed several equations earlier for W€,
the optimal guaranteed work:

We(p,H; — 0, Hy) = max W, (p, Hi — 0, Hy), e
We(p, H i =0 — vy, Hy =0)=(n— H:

max(P)) KT'In 2
(This is single-shot analogue of (W,,:) < dF),

Those expressions apply here too,
in this setting where Crooks also holds.




Early advantages of the links between
the two approaches

Source: http://arxiv.org/abs/1409.3878
Unification of fluctuation theorems and
one-shot statistical mechanics
Yunger-Halpern, Garner, Dahlsten, Vedral

— Dangers lurked even in the

bathroom.

Nicole Y-H Caltech Blog:
http://quantumfrontiers.com/2014/09/16/the-experimentalist-next-door/



1. Connecting single-shot stuff to experiment
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2.Single-shot information theory combined with Crooks

Known: Crooks implies

%D(wad(W)an(—W)) = (W) fud = AF = (Wiss)

where D is the standard relative entropy. In single-shot information theory this
tends to get replaced with Dy and D, two different relative Renyi entropies (In
this notation D = D). We shall here need:

Do (P(2)]|Q(x)) = log{min A € R: P(z) < AQ(x) Vz}.

New: Crooks also gives

1
BDOO(wad(W)”HPrev(_W)) = Whax — AF,

where at worst a finite-time forwards trial costs work W ,.x. Moreover

%DOO(PreV(_W)|Pde(W)) = AF = Wiin.

where at worst, a finite-time reverse trial outputs work Wi,in



e Single-shot statistical ng,-,-,gp,-(’w)
mechanics and Crooks
fluctuation theorem deal
with same scenarios.

e The agent chooses the
Hamiltonian path H(\(%))
and thermalising operations:

the agent’s strategy Str. /6~\L

e Str and initial state | -
p;i together induce Ws,. (W) str v
a work probability
distribution Psy ,. (w).

e Single-shot focus: W¢(p, H; — o, Hy) = maxygsy W&, (p, H; — 0, Hy)

e As both approaches deal with same scenario one can inter-mingle theoretical
and experimental results, connecting single-shot stuff with experiments, and
fluctuation stuff with single-shot information theory.



Outlook

Go beyond Crooks to entropy production relations in making the connection.

Go beyond H(\)-setting in making the connection, prefer battery included
explicitly.

Can these theoretical ideas contribute to new technology, perhaps involving
optomechanical systems like those here in Grenoble?

Energy and work as concepts sit oddly in quantum information theory, is there
a 'better’ way of defining them.

Single-shot statistical mechanics more generally ends up replacing entropy
differences with majorisation relations, | would say

In 20 years it will be standard to be doing thermodynamics using
majorisation rather than entropy

How does this tie into fluctuation relations?



Thank you, Gasd UNIVERSITY OF

Especially Alexia and Maxime 2 X0).470):3)

for extremely interesting workshop




0.1 Conditional entropy, relative entropy

The expressions for the conditional single-shot entropies are considerably more in-
timidating and arbitrary-looking at first sight. We now jump straight to the quantum
case. A helpful way to see where the conditional entropies come from is to follow
Datta [?] and define them via the relative Renyi entropy S, (p||o). It has often been
argued in the context of the Shannon/von Neumann entropy that relative entropy,

Si(pllo) :==Tr(plogp) —Tr(plogo)

is a 'parent-quantity’, in that S1(p) = —S1(p||1) and conditional entropy (defined
for the von Neumann entropy S = S via S1(A|B) := S1(AB) — S51(B)) can be
written as

S1(A|B) = —=S1(pasl|1 ® pB).

Datta notes that the relative Renyi entropies are parent-quantities in the same
way. The definition of D§(.||.) (called Dy, in [?]) is as follows:

Do(pllo) :== —log Tr(Il,0),
where 11, is the projector onto the support of p. The smooth version is defined as

Di(pllo) == sup Dqo(pl|o),
pEB=(p)

where B (p) is the set of states within = trace distance of p.
If we now demand, in analogy with the case of the von Neumann entropies, that

So(A|B) = —So(pap||l ® pp)

we recover one definition of the conditional max entropy:

So(A[B) = —log Tr((I1ap)(1 ® pp)).



We showed that the optimal guaranteed work is determined by an expression
involving a measure of how much more mixed one state p is than another, 0. We
call this the relative mixedness and write it as M (pl||o).

Definition 1. Consider two probability distributions A(x) and u(x) defined over x €
R(Z9 . Let A(x)] and pu(x) ] denote these distributions after a (measure-preserving)
rearrangement so that they are in descending order. Let the cumulative distribution
function associated with a function ~ be denoted as F,(z) := [ da’~(z'). Then
the relative mixedness of A\(xz) and p(x) is defined as

T
M(A||p) := max m s.t. Fy| (E) > Fu(x) Ve,
where m € R. In words: the relative mixedness of A\ and u is the maximal amount
by which one can stretch \| under the condition that its integral upper bounds the
integral of ;1] at all points.

By the definition of majorisation, if and only if M > 1 does (the spectrum of) p
majorise o, p > o. The actual number M can thus be viewed as putting a number
to how much p majorises o.



