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A few notes on stochastic thermodynamics 
from theory to experiment

S.Ciliberto, S. Joubaud, A. Petrosyan,   JSTAT (2010) P12003 , arXiv:1009.3362



Fluctuations in out of equilibrium systems
Steady current through a system in contact between two reservoirs

rare event

heat flux 
TH TC

TH  >TC

Thermal 
conductivity in 

nanotubes 

C.W. Chang, et al. 
PRL 101, 075903 (2008)

 What is the probabilty that the 
heat flows from the cold to the 

hot reservoir ?

VbRVa

 I
Electric current

Injected power 

R.Van Zon, et al
PRL 92, 130601 

(2004). N. Garnier, S. Ciliberto
PRE 71, 060101 (2005)
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Heat flux between two crcuits
 kept at different temperature The Mechanical equivalent

•  Trapped Brownian particles 

• Molecular motor

• Single molecule experiments  

Applications of FT



Fluctuations of injected and dissipated power 
in a harmonic oscillator.

Mechanical properties of nanotubes 

Micro Electro Mechanical Devices 

Dynamics of AFM tips 

Thermal rheometer



The torsion pendulum

gold mirror

8 mm

brass 
wire



External Forcing  

Typical applied torque < 50pN m



In Fourier space

The thermal fluctuation power spectral density is given by 
FDT

Equation of motion

 complex frequency-dependent elastic 
stiffness 

  where  is the 



Fluctuation Spectrum

viscoelasticity
viscous

 from  χ and FDT
 measured o



Work during periodic  forcing



PDF of the work



Energy Balance (I)

Sekimoto K,  Progress of Theoretical Phys. supplement (130), 17 (1998).



Energy Balance (II)
Sekimoto K,  Progress of Theoretical Phys. supplement (130), 17 (1998).



PDF of the work and of the heat



Stationary State Fluctuation Theorem (SSFT)

The Fluctuation Theorem fixes the symmetry of P(X)  around 
zero

Transient Fluctuation Theorem (TFT)

(stochastic systems)



The Fluctuation Theorem (FT)

  1993 First numercial evidence of fluctuations relations
               D. Evans, E.D.G. Cohen and G. P. Morris.  

  1994  Proof of the transient fluctuation theorem (TFT)  
        D. Evans  and D.J.Searles 

 1995  Proof of the Stationary State Fluctuation Theorem (SSFT) for  
    dynamical systems.  G. Gallavotti and E.D.G. Cohen.

 1997   Later proofs of FT for systems with stochastic dynamics were given by 
           J. Kurchan, J. Lebowitz and E. Spohn, J. Farago.

 2003  R. van Zon  and E.G.D. Cohen extended the results  
                     to the heat fluctuations in stochastic systems  

   New kinds of relations for suitably defined entropies have been proposed for    
 stochastic system. 



Short comment on FT for Gaussian P(Xτ)

FT imposes that: 

if

then  from  FT  

   

and



SSFT periodic  forcing: W

k B
T 



SSFT periodic forcing: Σ for  W

Analytically computed  from the Langevin equation 
using   two experimental observations

  The statistical properties of the bath are not modified by the 
driving

  The fluctuations of the work are Gaussian S. Joubaud, N. B. Garnier, S. Ciliberto, J. Stat. Mech., P09018 (2007)



Non-Universality of Σ(τ) for W

SSFT periodic forcing

SSFT linear forcing 



SSFT periodic forcing: Q 

Energy disipated in a time τ

S. Joubaud, N. B. Garnier, S. Ciliberto, J. Stat. Mech., P09018 (2007)



SSFT periodic forcing: Σ for  Q

k B
T



Trajectory dependent entropy

  U. Seifert, Phys. Rev. Lett., 95, 040602, (2005),                                for Langevin dynamics
  A. Puglisi, L. Rondoni, A. Vulpiani, 
    J. Stat. Mech.: Theory and Experiment, P08010,(2006)                        for Markov process 



Camera rapide

AOD
75 MHz

Experimental set-up Optical trap

-

silica bead 

laser beam

U(x) =
k

2
x2



Uo(x) = a x4 − b x2 + d x
x (µm)

U  (x)  (kBT)o

Brownian particle trapped by two laser beams 

∆Ui,j = U(xi)− U(xj)

Potential measured using detailed balance 

with 

τK = τo exp[
δU

kBT
]

The Kramers time 

τo = 1 swith 



Stochastic Resonance and FT



The non linear potential

 f=0.1Hz



Stochastic Resonance



Fluctuation Theorem for W
 f=0.25Hz   and τ= n / f

k B
T



What is FT useful for ? 

•  Several interesting consequences of FT such as the Jarzynski and 
Crooks  equalities are useful to compute the free energy difference 
bewteen two  equilibrium states using any kind of transformation

•  Hatano-Sasa relation and the fluctuation dissipation theorem for non 
 equilibrium steady states(NESS).  These  are  useful to compute the 
 response function of NESS

•  FT allows the measure of tiny amount of heat exchange bewteen the 
system  and its heat bath.  (example: application to aging and biological 
systems)

•  Measure of the offset of a variable

•  Measure of the mean injected power.  



Molecular motor and FT

Sticky flagellum



Molecular motor and FT

R

Sticky flagellum

polystyrene bead

(drawing not in scale) 



Molecular motor and FT

R
polystyrene bead

Standard  method to determine  the torque N



Molecular motor and FT

R polystyrene bead

Standard  method to determine  the torque N

Zo

  but 



Molecular motor and FT

R polystyrene bead

Standard  method to determine  the torque N

Zo

  but 

 and of the shape



Molecular motor and FT

New method  based on FT 
to determine  the torque N

γ is not needed 

SSFT  for          : 



Molecular motor and FT

Kumiko Hayashi et 
al., 
PRL 104, 218103 
(2010)

Various tests with different beads
(size and shape)

Σ
(τ

)



Jarzynski equality



Crooks identity

The derivation has been argued by Cohen and Mauzerall cond-mat/0406128



The Jarzynski work

 What is the meaning of  λ  in a real experiment ?
   

 What is the quantity wich is  controlled in an experiment ?

Connections between the macroscopic  variables and the microscopic 
ones

If   λ  is a displacement x  then:

If   λ   is a force F  then:



The classical work



Typical driving 



The Free Energy for the torsion pendulum 



Pf(-WJ)
Pb(WJ)

Jarzynski Work PDF

Pf(-WJ)
Pb(WJ)

-



Pf(-WJ)
Pb(WJ)

Jarzynski Work PDF

Pf(-WJ)
Pb(WJ)

-



Pb(-W)
Pf(W)

Classical Work PDF

Pb(-W)
Pf(W)



INFORMATION AND 
THERMODYNAMICS

• Landauer’s principle 

• How to realise it  ? 

• Experimental set-up

• Data analysis

• Comparison with numerical results

• Landauer’s limit and the Jarzynski equality 

• Conclusions 



Landauer’s Principle and 
The Maxwell’s Demon 

slow molecules 

fast  molecules 

A B

The first explanation came in 
1929 by Leó Szilárd, and 
later by Léon Brillouin



The Landauer’s principle     (I)

 Any logically irreversible transformation  of classical information      
                           is necessarily accompanied 
    by the dissipation of at least   kBT.ln 2   of heat per lost bit 

                  (about  3.10-21 Joules at room temperature) 

Typical examples of logically irreversible transformations are
           Boolean functions such as AND, NAND, OR   and NOR

They map several input states onto the same output state 

 The erasure of information, the RESET TO ONE operation, 
               is logically irreversible and  leads 
       to an entropy production of kB.ln 2 per erased bit 



Landauer’s principle II

Landauer’s principle is a central result which exorcises the Maxwell’s demon

It has been criticised and never tested in a real experiment

Questions 

•   Can the  Landauer’s limit be reached in any experiment ? 

•   Does  any experimentally feasable procedure  allow  us to reach the limit ? 

Following Bennett we use in our experiment the RESET  to ONE operation 

Bennett, C. H. The thermodynamics of computation, a review. Int. J. Theor. Phys. 21, 905-940 (1982).



The Bennett’s erasure procedure 

0 1 0 1 Initial state is 0 or  1 with 
    equal probability 1/2

                     Si= kB.ln 2 

Thus   ΔSmin= -kB.ln 2 

0 1 Final state is 1 with probability 1

                 Sf = 0

Procedure



Procedure 

Quasi Static :   -TΔS=Q

Energy variation :  ΔU=0

First principle : ΔU=-Q+W

⇓
In average :   <W> = <Q> = -T ΔS ≥ kBTln(2)

Numerical result : 
      Memory Erasure in Small Systems, 
      R. Dillenschneiderand E. Lutz, Phys. Rev. Lett. 102, 210601 (2009)



Camera rapide

AOD
75 MHz

Experimental set-up Optical trap

-

silica bead 

laser beam

U(x) =
k

2
x2



Uo(x) = a x4 − b x2 + d x
x (µm)

U  (x)  (kBT)o

Brownian particle trapped by two laser beams 

∆Ui,j = U(xi)− U(xj)

Potential measured using detailed balance 

with 

τK = τo exp[
δU

kBT
]

The Kramers time 

τo = 1 swith 



The  cell   for the  bead



The Erasure Procedure 

0               1U(x)  (kBT)

x (µm)

Initial state



The Erasure Procedure 

0               1U(x)  (kBT)

x (µm) x (µm)

reduction 
of the barrier 

0               1

Initial state



0               1
U

(x
)  

(k
B
T)

x (µm)

x (µm)

0               1 0               1

0               1 0               1 Progressive 
tilt of the 
potential

The Erasure Procedure 

Initial state



0               1
U

(x
)  

(k
B
T)

x (µm) x (µm)

0               1 0               1

0               1 0               1

0               1 Increasing of 
the barrier 

Final state 

The Erasure Procedure 

Initial state



f = −ν v

Potential external control  as 
a function of time 

The laser intensity 
controls the barrier height 

  The potential tilt is 
produceed by a linearly 
increasing external force f, 
applied on the time τ. 

Two control parameters:    τ the time of application of    f
                                            Fmax the maximum applied force

ν = 6πRµ

The force  f  is created by displacing the cell with respect to the laser, thus 

with

τcycle = τ +2 s 



Bead trajectories 

0

1

0 to 1 transition

1 to 1 transition



Bead trajectories 

0

1

0 to 1 transition

1 to 1 transition



νẋ = −∂Uo(x, t)

∂x
+ f(t) + η

The work on the erasure cycle

Wτ =

� τ

0
f ẋ dt

Sekimoto K,  Progress of Theoretical Phys. supplement (130), 17 (1998).

multiplying by ẋ and integrating for a time τ we get :

∆Uτ = −
� τ

0

∂Uo

∂x
ẋ dt

Qτ =

� τ

0
νẋ2 dt−

� τ

0
ηẋ dt

∆Uτ = Wτ −Qτ Stochastic thermodynamics 



∆Uτ = −
� τcycle

0

∂Uo

∂x
ẋ dt

The two erasure cycles have been considered 
0

1
1                 and 

0

1
0

W

WF = −
� τcycle

0
ν v(t)ẋ dt =

� τcycle

0
Fmax

t

τ
ẋ dt

Landauer’s limit

The work on the erasure cycle



Results of the erasure procedure 

Success rate r = 
number of successful cycles

Total number of cycle 

Qualitative observations :  
• At constant τ    :    W  and  r increase with  Fmax 
• At constant Fmax :  W decreases and r increases for increasing τ

Landauer’s limit

+   r >0.9
x  r > 0.85
o  r>0.75



< Q >r
Landauer= kT [ln 2 + r ln r + (1− r) ln(1− r)]

Landauer’s limit

+   r >0.9
x  r > 0.85
o  r>0.75

Landauer’s limit as a function of r

< Q >r
Landauer= 0At r=0.5    Indeed the  Erasure Procedure 

left the initial state unchanged



τ → ∞

< W >� ∆F +B/τ

As < ∆U >= 0 then ∆F = −T∆S and < Q >=< W >� kT ln 2 +B/τ

Landauer’s limit

+   r >0.9
x  r > 0.85
o  r>0.75

Asymptotic behaviour 

Sekimoto -Sasa J. Phys.
Soc. Jpn. 66, 3326 (1997).

< Q >=< Q >Landauer +B/τ



The success rate r

Why in the experiment r< 1 ? 

Is this result produced by 3D
 effects of the trap ? 

Is the finite height of the initial
barrier responsible of r<1 ? 



0               1
U

(x
)  

(k
B
T)

x (µm) x (µm)

0               1 0               1

0               1 0               1

0               1

Final state 

The Erasure Procedure 

Initial state



The success rate r

Why in the experiment r< 1 ? 

Is this result produced by 3D
 effects of the trap ? 

Numerical test

Is the finite height of the initial
barrier responsible of r<1 ? 

We use all the experimental parameters and procedure

with two different initial barriers  8kBT   and  15kBT

Texte

νẋ = −∂Uo(x, t)

∂x
+ η



νẋ = −∂Uo(x, t)

∂x
+ η

The success rate r

Why in the experiment r< 1 ? 
Is this result produced by 3D
 effects of the trap ? 

Numerical test

initial barrier 
     15kBT

initial barrier 
     8kBT

Is the finite height of the initial
barrier responsible of r<1 ? 



Conclusions (partials)

• Our experimental results indicate that the thermodynamic limit to 
information erasure, the Landauer bound, can be approached in the 
quasistatic  regime, but not exceeded.

• The asymptotic limit is reached in 1/τ  for  τ>  3 τk

• The fact that r<1 is due to the finite height of the initial barrier

• Thermal fluctuations play an important role to reach the limit 

Question:    Does Jarzynski equality compute the right ΔF? 
               



Ws = −
� τcycle

o
λ̇
∂H(x,λ)

∂λ
dt

Landauer’s limit and the Jarzynski equality

Ws =

� τ

o
ḟ x dt = [f x]τo −

� τ

o
f ẋ dt = −Wf

In our case this equality transforms

< exp(−Ws) >= exp(−∆F )

with

 Since the height of the barrier is always finite there is 
 no change in the equilibrium  F

 of the system between the beginning and the end of the procedure.

< exp(−Ws) >=
ρeq(τ)

ρ(τ)
exp(−∆F )

S. Vaikuntanathan and C. 
Jarzynski, Euro. Phys. Lett.
87, 60005 (2009).

Generalized Jarzynski



ρ = r � 1, ρeq = 1/2, ∆F = 0

< exp(−Ws) >→0=
1/2

r

< Ws >→0 ≥ (ln 2 + ln r)

Landauer’s limit and the Jarzynski equality

If the final state is 0     then

and the Generalized Jarzynski    is : 

Work done if the 
particle makes 
the jump from 1 to 0 

Work done when the 
particle starts in the 
final state

1

2
< exp(−W1,0) > +

1

2
< exp(−W0,0) >=

1

2

from Jensen inequality    

0

1
0We consider the erasure procedure 



Landauer’s limit and the Jarzynski equality

< exp(−W1,0) >

< exp(−W0,0) >

< exp(−W0,0) > + < exp(−W1,0) >

− ln

�
< exp(−W0,0) > + < exp(−W1,0) >

2

�
= ∆Feff



Landauer’s limit and the Jarzynski equality



< exp(−Ws) >→0=
1/2

r

Landauer’s limit and the Jarzynski equality

ρ = r � 1, ρeq = 1/2, ∆F = 0If the final state is 0      then

0

1
0We consider the erasure procedure 

< Ws >→0 ≥ (ln 2 + ln r)and 

< Ws >= r < Ws >→0 +(1− r) < Ws >→1Total work

< Ws > ≥ ln 2 + r ln r + (1− r) ln(1− r)using the inequalities 

< exp(−Ws) >→1=
1/2

1− r
< Ws >→1 ≥ ln 2 + ln(1 − r)

If the final state is  1  then ρ = (1− r) � 0, ρeq = 1/2, ∆F = 0

and 

The generalized Landauer’s bound 



Conclusions

• Our experimental results indicate that the thermodynamic limit to 
information erasure, the Landauer bound, can be approached in the 
quasistatic  regime, but not exceeded.

• The asymptotic limit is reached in 1/τ 

• The fact that r<1 is due to the finite height of the initial barrier

• Thermal fluctuations play an important role to reach the limit

• Jarzinsky equality computes the Landauer limit independently of the
   rapidity of the procedure  

Question : Does any procedure  allows us to reach the Landauer’s limit ?
Answer : NO. The barrier reduction and tilt must be two separate process

                    See recent paper on optimisation : 
         E. Aurell, et al. J. Stat. Phys.147, 487-505 (2012).



Other procedure   (I)
Relative change of 
the laser intensity

The ramping time of the laser intensity has been changed  from 1s to 50s 



Other procedure   (II)

The work is mainly due to the jump of the particle
    The Landauer limit can never be reached 

Fixed intensity ratio  Ramp of intensity ratio



Memory Erasure in Small Systems, 
      R. Dillenschneiderand E. Lutz, Phys. Rev. Lett. 102, 210601 (2009)

Potential :

External force :

Numerical results



τK = τo exp[
∆U

kBT
] is the Kramers time withτo � 1s

τ̄ =
τ

τk

F̄ =
δx Fmax

∆U

δx is the distance of the potential minima

r =
1

2
[1 + exp(− 1

τ̄ F̄
)]

Non-dimensional 
numbers and the success rate

Possibility of jumping
 the barrier without force

 The maximum external work 
 overcomes the barrier 

One can think that the success rate is : 



Non-dimensional 
numbers and the success rate

r =
1

2
[1 + exp(− a

τ̄ F̄ 2
)]Experimentally



Conclusions

• Our experimental results indicate that the thermodynamic limit to 
information erasure, the Landauer bound, can be approached in the 
quasistatic  regime, but not exceeded.

• The asymptotic limit is reached in 1/τ  for  τ>  3 τk

• The fact that r<1 is due to the finite height of the initial barrier

• Thermal fluctuations play an important role to reach the limit 

Question : Does any procedure  allows us to reach the Landauer’s limit ?

Answer : NO. The barrier reduction and tilt must be two separate process


