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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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∂t
= �i[H0 + Hint, r] + Â
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
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pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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We present a theoretical study of an electronic quantum refrigerator based on four quantum dots

arranged in a square configuration, in contact with as many thermal reservoirs. We show that the system

implements the minimal mechanism for acting as a self-contained quantum refrigerator, by demonstrating

heat extraction from the coldest reservoir and the cooling of the nearby quantum dot.
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The increasing interest in quantum thermal machines
has its roots in the need to understand the relations bet-
ween thermodynamics and quantum mechanics [1,2]. The
progress in this field may as well have important applica-
tions in the control of heat transport in nanodevices [3]. In a
series of recent works [4–6], the fundamental limits to the
dimensions of a quantum refrigerator have been found.
It has been further demonstrated that these machines could
still attain Carnot efficiency [5], thus launching the call for
the implementation of the smallest possible quantum re-
frigerator. References [4–6] considered self-contained ther-
mal machines defined as those that perform a cycle without
the supply of external work, their action being grounded
on the steady-state heat transfer from thermal reservoirs
at different temperatures. The major difficulty in the real-
ization [7,8] of self-contained refrigerators (SCRs) is the
engineering of the crucial three-body interaction enabling
the coherent transition between a doubly excited state in
contact with a hot (H) and cold (C) reservoir, and a singly
excited state coupled to an intermediate (or ‘‘room,’’ R)
temperature bath. We get around this problem by proposing
an experimentally feasible implementation of a minimal
SCRwith semiconducting quantumdots (QDs) operating in
the Coulomb blockade regime. We are thus able to estab-
lish a connection between the general theory of quantum
machines and the heat transport in nanoelectronics [3].

QDs contacted by leads were proposed as ideal systems
for achieving high thermopower [9–11] or anomalous ther-
mal effects [12]. Here, we study a four-QD planar array
(hereafter named a ‘‘quadridot’’ for simplicity) coupled
to independent electron reservoirs as shown in Fig. 1;
with proper (but realistic) tuning of the parameters, we
will show that the quadridot acts as a SCR, which pumps
energy from the high temperature reservoir H and the low
temperature reservoir C to the intermediate temperature
reservoirs R1 and R2. Furthermore, we will analyze the
conditions under which the quadridot is able to cool the
dot QD2 which is directly connected to the bath C at an
effective temperature that is lower than the one it would
have had in the absence of the other reservoirs. This will
lead us to introduce an operative definition of the local

effective temperature, depending on the measurement
setup, and to predict the existence of working regimes
where, for instance, the refrigeration is not accompanied
by the cooling of QD2. We start analyzing the system
Hamiltonian, identifying the conditions that allow us to
mimic the behavior of the SCR of Ref. [4].
In the absence of the coupling to the leads, the quadridot

shown in Fig. 1 is described by the Hamitonian

H QD ¼
X

i¼1;...;4

!ini þ
X

i!j

Uij

2
ninj ! tðcy1c4 þ cy2c3 þH:c:Þ;

where for i ¼ 1; . . . ; 4, cyi , ci, and ni ¼ cyi ci represent
respectively the creation, annihilation, and number opera-
tors associated with the ith QD. In this expression, the
quantities !i gauge the single-particle energy levels, t
defines the tunneling coupling between the dots, and Uij

describes the finite-range contribution of the Coulomb
repulsion. To reduce the maximum occupancy in each
QD to one electron, we will assume the on-site repulsion
terms Uii to be the largest energy scale in the problem.
Furthermore, in order to mimic the dynamics of Ref. [4],
we will take U12 ¼ U34 ¼ U? and U23 ¼ U14 ¼ Uk,
both much larger than the ‘‘diagonal’’ terms U24 ¼ U13 ¼
Ud, and tune the single-electron energy level of the

FIG. 1 (color online). The quadridot. The four quantum dots
QD1, QD2, QD3, and QD4 are weakly coupled to the reservoirs
R1, C, R2, and H, respectively, which are all grounded and
maintained at temperatures TH > ðTR1

¼ TR2
¼ TRÞ> TC.

Tunneling is allowed only between QD1 and QD4, and between
QD2 and QD3 (t being the gauging parameter).
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
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For this model to act as a refrigerator, the stationary temperature of qubit 1
must be colder than its bath temperature, i.e. TS

1 < Tc. This happens whenever
the occupation probability of the ground state for particle 1 is increased compared
to its thermal population. This happens whenever g > 0. From Equation (9) it
can be checked that the denominator is a positive quantity and therefore the sign
of g depends only upon the numerator, �D. Using the definitions Equation (10) and
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e�E1/TC e�E3/TH > e�E2/TR (12)
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This is the fundamental design constraint on our refrigerator; as long as this
condition is satisfied our model works as a refrigerator. As the ratio E1/E3
approaches the above limit, the temperature of the cold qubit approaches from below
the temperature of its bath; everything else being held constant, this implies that it
will take longer for the refrigerator to draw heat from the cold bath, similarly to
what happens to a classical refrigerator as one approaches the reversible limit, as its
functioning becomes adiabatically slow. The above fundamental design constraint
will play the central role in analysing the efficiency.

The quantum efficiency

To analyse the efficiency of the refrigerator an expression for the amount of heat that
the quantum machine is able to exchange with the thermal reservoirs in which it is in
contact must be derived. To do this let us consider the change of one of the particles
in a small time dt induced by the resevoir. From Equation (2) we find that

dri(t) = ri(t + dt)� ri(t) = pidtti + (1 � pidt)ri(t),
= pidt(ti � ri(t)). (14)

To this change of state corresponds a change in energy, dEi, given by

dEi = Tr(Hidri(t)) = pidtTr(Hi(ti � ri(t)) (15)

The smallest refrigerators can reach maximal efficiency 5

Here r0i = ri for i = 2, otherwise r0i = ri. The first notable features of the solution is
that all single-party and two-party reduced density matrices are diagonal. Second,
and of most importance, is the form of the single-party states which is given by

rS
i = ti +

qg

pi
Zi (11)

thus the occupation probability of the ground state for each qubit is shifted from its
value at equilibrium by an amount proportional to the parameter g.

For this model to act as a refrigerator, the stationary temperature of qubit 1
must be colder than its bath temperature, i.e. TS

1 < Tc. This happens whenever
the occupation probability of the ground state for particle 1 is increased compared
to its thermal population. This happens whenever g > 0. From Equation (9) it
can be checked that the denominator is a positive quantity and therefore the sign
of g depends only upon the numerator, �D. Using the definitions Equation (10) and
Equation (3) it can be shown that the condition �D > 0 is equivalent to

e�E1/TC e�E3/TH > e�E2/TR (12)

which, upon further manipulation, can be re-expressed as

E1
E3

<
1 � TR

TH
TR
TC

� 1
(13)

This is the fundamental design constraint on our refrigerator; as long as this
condition is satisfied our model works as a refrigerator. As the ratio E1/E3
approaches the above limit, the temperature of the cold qubit approaches from below
the temperature of its bath; everything else being held constant, this implies that it
will take longer for the refrigerator to draw heat from the cold bath, similarly to
what happens to a classical refrigerator as one approaches the reversible limit, as its
functioning becomes adiabatically slow. The above fundamental design constraint
will play the central role in analysing the efficiency.

The quantum efficiency

To analyse the efficiency of the refrigerator an expression for the amount of heat that
the quantum machine is able to exchange with the thermal reservoirs in which it is in
contact must be derived. To do this let us consider the change of one of the particles
in a small time dt induced by the resevoir. From Equation (2) we find that

dri(t) = ri(t + dt)� ri(t) = pidtti + (1 � pidt)ri(t),
= pidt(ti � ri(t)). (14)

To this change of state corresponds a change in energy, dEi, given by

dEi = Tr(Hidri(t)) = pidtTr(Hi(ti � ri(t)) (15)

E1 

E2 

E3 

TC TR TH 



Cooling & Efficiency 

Cooling: when |101> is more populated than |010> 

2

E2E3

E1

TC

TH TR

FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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Here r0i = ri for i = 2, otherwise r0i = ri. The first notable features of the solution is
that all single-party and two-party reduced density matrices are diagonal. Second,
and of most importance, is the form of the single-party states which is given by

rS
i = ti +

qg

pi
Zi (11)

thus the occupation probability of the ground state for each qubit is shifted from its
value at equilibrium by an amount proportional to the parameter g.

For this model to act as a refrigerator, the stationary temperature of qubit 1
must be colder than its bath temperature, i.e. TS

1 < Tc. This happens whenever
the occupation probability of the ground state for particle 1 is increased compared
to its thermal population. This happens whenever g > 0. From Equation (9) it
can be checked that the denominator is a positive quantity and therefore the sign
of g depends only upon the numerator, �D. Using the definitions Equation (10) and
Equation (3) it can be shown that the condition �D > 0 is equivalent to

e�E1/TC e�E3/TH > e�E2/TR (12)

which, upon further manipulation, can be re-expressed as

E1
E3

<
1 � TR

TH
TR
TC

� 1
(13)

This is the fundamental design constraint on our refrigerator; as long as this
condition is satisfied our model works as a refrigerator. As the ratio E1/E3
approaches the above limit, the temperature of the cold qubit approaches from below
the temperature of its bath; everything else being held constant, this implies that it
will take longer for the refrigerator to draw heat from the cold bath, similarly to
what happens to a classical refrigerator as one approaches the reversible limit, as its
functioning becomes adiabatically slow. The above fundamental design constraint
will play the central role in analysing the efficiency.

The quantum efficiency

To analyse the efficiency of the refrigerator an expression for the amount of heat that
the quantum machine is able to exchange with the thermal reservoirs in which it is in
contact must be derived. To do this let us consider the change of one of the particles
in a small time dt induced by the resevoir. From Equation (2) we find that

dri(t) = ri(t + dt)� ri(t) = pidtti + (1 � pidt)ri(t),
= pidt(ti � ri(t)). (14)

To this change of state corresponds a change in energy, dEi, given by

dEi = Tr(Hidri(t)) = pidtTr(Hi(ti � ri(t)) (15)
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thus, taking the limit dt ! 0 gives the rate of change of energy of the particle due to
the interaction with the reservoir

dEi

dt
= piTr(Hi(ti � ri(t)) (16)

which in other words it is the amount of energy supplied to the particle from the bath
and is therefore the rate of heat flow, which we shall denote Qi.

Using the explicit form previously obtained for ri, Equation (11) along with the
definition of the Hamiltonian Equation (1) we find that this can be re-written as

dEi

dt
= piTr

 
EiPi

✓
� qg

pi
Zi

◆!
= (�1)i+1qgEi, (17)

where the factor (�1)i+1 arises due to the fact that Z1 = �Z2 = Z3 = Z, the standard
Pauli operator. Thus we see that the rate of heat flow between each bath and particle
is given by

QC = qgE1, QR = �qgE2, QH = qgE3, (18)

and thus the efficiency of our quantum refrigerator is given by

hQ =
QC

QH
=

E1
E3

. (19)

We arrive at the interesting result that although the individual heat currents have a
rather complicated dependence upon all of the parameters in the problem, through q
and g, the efficiency of the fridge is in fact independent on all parameters except the
ratio of energy levels. This result, although at first sight contradictory, is consistent
with the results found in [6] and can be understood qualitatively: It is the interaction
Hamiltonian which takes the particles away from their thermal equilibrium states,
and since the Hamiltonian only acts on particles 1 and 3 simultaneously its clear that
the rates at which they exchange heat with their reservoirs must be proportional to
each other – hence the dependence in each case cancels when looking at the ratio.

Equation Equation (19) however must be taken in conjunction with the basic
design constraint, equation Equation (13), which then yields an upper bound on the
quantum efficiency:

hQ <
1 � TR

TH
TR
TC

� 1
. (20)

It is important to note that since the refrigerator works as long as the condition
Equation (13) is satisfied that this is indeed an achievable bound on the efficiency
of the refrigerator. In other words, we can get as close as we like to the following
quantum efficiency

hQ
max =

1 � TR
TH

TR
TC

� 1
. (21)
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
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pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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We present a quantum enhanced scheme for absolute
measurements of a small optical absorption in a sam-
ple. We compare our technique to a standard (classical)
method. We discuss experimental regimes in which our
method outperforms the classical one. Finally, we briefly
comment on the possibility of implementing our tech-
nique experimentally.

Consider the experimental situation sketched in Fig-
ure 1a. A light beam is sent through a sample, which
features a very small absorption ⌘. Hence the intensity
of the light beam after passing through the sample is
I = (1� ⌘)I0, where I0 is the initial intensity. In princi-
ple, it is possible to make an absolute measurement of an
arbitrary small absorption ⌘ > 0 using a detector a↵ected
only by statistical noise, by considering su�ciently many
trials. However, in practice, technical imperfections and
fluctuations in the experimental setup usually impose a
limit on the smallest value of ⌘ that can be measured.
It turns out that in several experimental cases, a much
less direct measurement technique (see Fig.1b) gives en-
hanced precision compared to the above (direct) mea-
surement. The idea consists in exploiting the fact that
the (small) amount of light which is absorbed in the ma-
terial locally heats up the sample, hence modifying the
local refractive index. By using an additional light beam
(the probe), it is then possible to measure this change in
refractive index, by observing a phase shift. This mea-
surement technique has been used in several experimental
configurations. Here, using ideas from quantum metrol-

ogy, we present a quantum-enhanced version of the above
scheme.

We start by modeling the experimental situation of
Fig. 1b by the diagram sketched in Fig. 1c. To model
the absorption in the sample we consider a beam-splitter
with reflectivity r2 = ⌘ and transmissivity t2 = 1 � ⌘.
While the transmitted beam exits the sample, the re-
flected beam induces a phase shift on the auxiliary beam.
Here we model the interaction between the two beams
(reflected and auxilary) via a Kerr nonlinearity � (give H
somewhere). Finally, the auxiliary beam exits the sam-
ple, while the reflected beam is lost (the energy is ab-
sorbed in the material). The phase induced on the aux-
iliary beam is then recovered via a homodyne measure-
ment. More precisely, the auxiliary beam is (re)combined
with an (intense) reference beam on a 50/50 beam-
splitter; the di↵erence between the energy of the two
output modes is then inferred.

Note that, in this scheme, the phase induced on the
auxiliary beam depends linearly on the intensity in the
reflected beam, which is in accordance with experimental
observations.

TV =
E1

E2
TR

� E3
TH

(1)
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as while gases are expanding, etc.) The concepts of virtual
qubits and virtual temperatures offer for the first time the tools
to address this question.

The crucial point we want to make is that it is not necessary
to generate work—even internally in the machine—to create
a refrigerator. The refrigerators we presented in the previous
section function by putting an external system in contact with
virtual qubits whose temperature is lower than T1 and T2, the
actual temperatures of the two baths. At no point is there ever
a population inversion involved; in other words, at no point is
work produced or used.

In this sense, this is a genuine refrigerator. Ordinary
refrigerators (and heat pumps) that use work are now seen
to be “wasteful.” This is most evident if we talk about the
resources that a composite thermal bath provide us with. It is
clear that work is a resource provided by the composite bath,
and we can indeed use this to produce a refrigerator. However,
we see that the composite bath provides other resources as
well, namely energy at any temperature, not merely work.
Energy at a cold temperature is a resource which can be used
to achieve cooling directly, while work needs to be somehow
converted. Thus, ordinary refrigerators make non-necessary
use of a resource (work) that is more powerful than is needed.
Genuine thermal machines use the minimal possible resources
and are thus the “purest” thermal machines.

Furthermore, it is essential to make the difference between
genuine and nongenuine thermal machines when we want to
know what exactly do they do to the thermal baths that drive
them. If we take the baths not to be strictly infinite in size,
then thermal machines necessarily degrade them, in particular
reducing their free energy. Genuine refrigerators couple to
different virtual qubits than refrigerators which use work as
an intermediate effect. Hence, they clearly affect the bath in a
different way. It would be interesting to study further exactly
these differences.

Finally, it is illuminating to see, for the case of the smallest
machines, how the functionality is changed as we vary the
bath parameters. In Fig. 7 we hold fixed the design of the

FIG. 7. (Color online) Graph of virtual temperature against bath
temperature. We hold fixed the local energy-level spacings E1 and E2,
as well as the bath temperature T1, and allow the bath temperature T2 to
vary. When T2 < T1, the virtual temperature Tv becomes smaller than
either environmental temperature and the machine is a refrigerator.
For T1 < T2 < E2

E1
T1, Tv becomes larger than T1 and T2 and hence the

machine is a heat pump. Finally, for E2
E1

T1 < T2, Tv becomes negative
and the machine functions as a heat engine.

machine (E1 and E2), and the bath temperature T1, and plot
how the virtual temperature (and therefore function) changes
as we vary the remaining bath temperature T2. It is interesting
to note that as T2 approaches E2

E1
T1 from above then Tv → ∞.

This engine is the reversible (Carnot) engine and is seen to be
at the transition between heat pump and heat engine; in this
sense it is again seen to be the “weak.”
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APPENDIX A: THERMAL MACHINES ACTING
ON FINITE-DIMENSIONAL SYSTEMS

In this Appendix we demonstrate explicitly our claim that
external systems put into thermal contact with the machine
virtual qubit thermalize to its virtual temperature, for the case
of finite dimensional systems [see Fig. 8]. Crucially, this holds
for both positive and negative temperatures. The temperature
to which the external system thermalizes classifies the behavior
of the machine: If it is colder than either environmental
temperature, then the machine is a refrigerator; if it is hotter,
then it is a heat pump. Finally, if the temperature is negative,
then it is a heat engine.

To see explicitly this thermalization, consider initially that
the external system is itself completely isolated except for the
interaction with the thermal machine. That is, we consider the
external system to only be in contact with the thermal machine,
not with any other external system, so it is only the machine
that determines its behavior.

In the weak coupling limit, the dynamics of the system are
accurately described by a master equation. The equation will
generically take the form

∂ρ

∂t
= −i[H0 + Hint,ρ] + D1(ρ) + D2(ρ), (A1)

FIG. 8. (Color online) Schematic diagram of thet smallest ma-
chine interacting with an isolated external system. An isolated
external system—here an N level equispaced system—is placed
into thermal contact (wavy lines) with the machine virtual qubit,
which has matching energy-level spacing. The net effect is that the
external system is placed in thermal contact with virtual qubits in the
composite bath at temperature Tv , mediated by the machine virtual
qubit, and reaches a Boltzmannian at temperature Tv . This holds
independent of whether Tv is positive or negative, in which case the
state is an “inverted Boltzmannian.”
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We present a quantum enhanced scheme for absolute
measurements of a small optical absorption in a sam-
ple. We compare our technique to a standard (classical)
method. We discuss experimental regimes in which our
method outperforms the classical one. Finally, we briefly
comment on the possibility of implementing our tech-
nique experimentally.

Consider the experimental situation sketched in Fig-
ure 1a. A light beam is sent through a sample, which
features a very small absorption ⌘. Hence the intensity
of the light beam after passing through the sample is
I = (1� ⌘)I0, where I0 is the initial intensity. In princi-
ple, it is possible to make an absolute measurement of an
arbitrary small absorption ⌘ > 0 using a detector a↵ected
only by statistical noise, by considering su�ciently many
trials. However, in practice, technical imperfections and
fluctuations in the experimental setup usually impose a
limit on the smallest value of ⌘ that can be measured.
It turns out that in several experimental cases, a much
less direct measurement technique (see Fig.1b) gives en-
hanced precision compared to the above (direct) mea-
surement. The idea consists in exploiting the fact that
the (small) amount of light which is absorbed in the ma-
terial locally heats up the sample, hence modifying the
local refractive index. By using an additional light beam
(the probe), it is then possible to measure this change in
refractive index, by observing a phase shift. This mea-
surement technique has been used in several experimental
configurations. Here, using ideas from quantum metrol-

ogy, we present a quantum-enhanced version of the above
scheme.

We start by modeling the experimental situation of
Fig. 1b by the diagram sketched in Fig. 1c. To model
the absorption in the sample we consider a beam-splitter
with reflectivity r2 = ⌘ and transmissivity t2 = 1 � ⌘.
While the transmitted beam exits the sample, the re-
flected beam induces a phase shift on the auxiliary beam.
Here we model the interaction between the two beams
(reflected and auxilary) via a Kerr nonlinearity � (give H
somewhere). Finally, the auxiliary beam exits the sam-
ple, while the reflected beam is lost (the energy is ab-
sorbed in the material). The phase induced on the aux-
iliary beam is then recovered via a homodyne measure-
ment. More precisely, the auxiliary beam is (re)combined
with an (intense) reference beam on a 50/50 beam-
splitter; the di↵erence between the energy of the two
output modes is then inferred.

Note that, in this scheme, the phase induced on the
auxiliary beam depends linearly on the intensity in the
reflected beam, which is in accordance with experimental
observations.
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
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pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
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pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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∂t
= �i[H0 + Hint, r] + Â
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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∂t
= �i[H0 + Hint, r] + Â
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation
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= �i[H0 + Hint, r] + Â
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pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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efficient function without entanglement. To see this
let us first rewrite rS in the following form

rS = w|GHZihGHZ|+ (1 � w)sdiag (6)

where |GHZi = (|010i + i|101i)/p2 is tripartite
entangled state (of the Greenberger-Horne-Zeilinger
form), and sdiag is a diagonal density matrix, hence
corresponding to a fully separable state. While there
is no unique notion of entanglement in multipartite
systems, it turns out that the entanglement of states of
the form (6) can be conveniently characterized.

We first note that in the vicinity of any Carnot
point, the state rS has full rank and off-diagonal terms
which are small compared to diagonal ones. Hence,
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that rS is fully separable in the vicinity of any Carnot
point. In fact, it can even be shown that any rS at the
Carnot point has a small ball of fully separable state in
the full Hilbert space around it—see [28] (part A) for
more details.

Entangled regimes. Next we ask whether there ex-
ists regimes in which entanglement is present in rS.
At this point it is useful to recall that entanglement
can appear under several forms in a state of 3 qubits.
Indeed, there can be bipartite entanglement along a
given bipartition (e.g. qubit 1 versus qubits 2 and 3),
or genuine tripartite entanglement. In order to detect
entanglement, our main tool will be a class of entan-
glement witnesses developed in [29, 30] which allow
one to fully characterize the entanglement of states of
the form rS. Moreover, these witnesses also provide
a meaningful entropy based measure of multipartite
entanglement [33] and necessary and sufficient condi-
tions for biseparability for our system [31]. Formally,
these witnesses are given by inequalities of the form
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(S = {2}), R|CH (S = {1}), CR|H (S = {3}) or the
genuine multipartite concurrence (see Refs. [33, 34])
for S = {1, 2, 3}. When inequality (7) holds, no entan-
glement is present on the given bipartition.

Moving away from the Carnot point we find,
by sweeping though the parameter space numeri-

cally, that there exists regimes where entanglement
is present. In fact, most types of entanglement can
be found. We find regimes where there is entangle-
ment (i) along only a single bipartition of the system,
(ii) on all three bipartitions at the same time, and (iii)
genuine tripartite entanglement, the strongest form of
multipartite entanglement. See [28] for details and
the specific choice of parameters which exhibit these
forms of entanglement (part B and Table 1).

Entanglement enhances cooling. In the remainder of
the paper, we investigate the usefulness of the entan-
glement that we have just uncovered in the fridge.
We will see that entanglement can in fact enhance the
performance of the refrigerator. For this we consider
the task of cooling a qubit with given energy E1, im-
mersed in a bath at a given temperature TC with fixed
coupling p1. As a source of free energy, we have at our
disposal two heat baths, at temperatures TR and TH
(again assuming that TC < TR < TH). The challenge
is then to adjust the remaining parameters in order to
minimize the temperature of the qubit in its stationary
state. The free parameters are the energy of the hot
qubit E3, the thermalization coefficients for the ma-
chine qubits p2 and p3, and the interaction strength g.
These parameters are not completely free, but all con-
strained. We require that g ⌧ Ei, pj ⌧ Ei, pjg ⌧ g
and pjg ⌧ pj. These constraints can be enforced by
choosing a cutoff for the pj and g. We observe that all
of our conclusions below remain valid independent of
the precise choice of the cutoff. The only change is that
the strength of the effect becomes weaker as we make
the constraints stronger, as is intuitively expected. We
comment further on this at the end of this section.

We first perform the optimization without addi-
tional constraints. That is, among all possible fridges,
we look for the one achieving the best cooling, i.e. the
smallest value of TS. Next, we repeat this optimiza-
tion, but now adding the constraint that no entan-
glement is present in the fridge. More precisely, we
find the optimal cooling (now denoted T⇤

S ), imposing
that the stationary state rS satisfies all the entangle-
ment witness inequalities (7) (and their relevant sym-
metries), hence ensuring separability across every bi-
partition. The results are presented in Fig. (2). We ob-
serve that the cold qubit can be cooled to lower tem-
peratures when no restrictions are placed, compared
to the case when the system is constrained to be sep-
arable. In the regime where TR ⌧ TH , entanglement
provides a significant enhancement in cooling, which
is quantified by the ratio
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form), and sdiag is a diagonal density matrix, hence
corresponding to a fully separable state. While there
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the form (6) can be conveniently characterized.

We first note that in the vicinity of any Carnot
point, the state rS has full rank and off-diagonal terms
which are small compared to diagonal ones. Hence,
in this regime, the state can be decomposed as rS =
(1 � e)s0

diag + er(p), where s0
diag is a diagonal sepa-

rable state and r(p) = p|GHZ)ihGHZ| + (1 � p) 1
8 .

Since r(p) is fully separable for p  3
11 [27], it follows

that rS is fully separable in the vicinity of any Carnot
point. In fact, it can even be shown that any rS at the
Carnot point has a small ball of fully separable state in
the full Hilbert space around it—see [28] (part A) for
more details.

Entangled regimes. Next we ask whether there ex-
ists regimes in which entanglement is present in rS.
At this point it is useful to recall that entanglement
can appear under several forms in a state of 3 qubits.
Indeed, there can be bipartite entanglement along a
given bipartition (e.g. qubit 1 versus qubits 2 and 3),
or genuine tripartite entanglement. In order to detect
entanglement, our main tool will be a class of entan-
glement witnesses developed in [29, 30] which allow
one to fully characterize the entanglement of states of
the form rS. Moreover, these witnesses also provide
a meaningful entropy based measure of multipartite
entanglement [33] and necessary and sufficient condi-
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strained. We require that g ⌧ Ei, pj ⌧ Ei, pjg ⌧ g
and pjg ⌧ pj. These constraints can be enforced by
choosing a cutoff for the pj and g. We observe that all
of our conclusions below remain valid independent of
the precise choice of the cutoff. The only change is that
the strength of the effect becomes weaker as we make
the constraints stronger, as is intuitively expected. We
comment further on this at the end of this section.
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we look for the one achieving the best cooling, i.e. the
smallest value of TS. Next, we repeat this optimiza-
tion, but now adding the constraint that no entan-
glement is present in the fridge. More precisely, we
find the optimal cooling (now denoted T⇤

S ), imposing
that the stationary state rS satisfies all the entangle-
ment witness inequalities (7) (and their relevant sym-
metries), hence ensuring separability across every bi-
partition. The results are presented in Fig. (2). We ob-
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more details.
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ists regimes in which entanglement is present in rS.
At this point it is useful to recall that entanglement
can appear under several forms in a state of 3 qubits.
Indeed, there can be bipartite entanglement along a
given bipartition (e.g. qubit 1 versus qubits 2 and 3),
or genuine tripartite entanglement. In order to detect
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glement witnesses developed in [29, 30] which allow
one to fully characterize the entanglement of states of
the form rS. Moreover, these witnesses also provide
a meaningful entropy based measure of multipartite
entanglement [33] and necessary and sufficient condi-
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comment further on this at the end of this section.
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efficient function without entanglement. To see this
let us first rewrite rS in the following form

rS = w|GHZihGHZ|+ (1 � w)sdiag (6)

where |GHZi = (|010i + i|101i)/p2 is tripartite
entangled state (of the Greenberger-Horne-Zeilinger
form), and sdiag is a diagonal density matrix, hence
corresponding to a fully separable state. While there
is no unique notion of entanglement in multipartite
systems, it turns out that the entanglement of states of
the form (6) can be conveniently characterized.

We first note that in the vicinity of any Carnot
point, the state rS has full rank and off-diagonal terms
which are small compared to diagonal ones. Hence,
in this regime, the state can be decomposed as rS =
(1 � e)s0

diag + er(p), where s0
diag is a diagonal sepa-

rable state and r(p) = p|GHZ)ihGHZ| + (1 � p) 1
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Since r(p) is fully separable for p  3
11 [27], it follows

that rS is fully separable in the vicinity of any Carnot
point. In fact, it can even be shown that any rS at the
Carnot point has a small ball of fully separable state in
the full Hilbert space around it—see [28] (part A) for
more details.

Entangled regimes. Next we ask whether there ex-
ists regimes in which entanglement is present in rS.
At this point it is useful to recall that entanglement
can appear under several forms in a state of 3 qubits.
Indeed, there can be bipartite entanglement along a
given bipartition (e.g. qubit 1 versus qubits 2 and 3),
or genuine tripartite entanglement. In order to detect
entanglement, our main tool will be a class of entan-
glement witnesses developed in [29, 30] which allow
one to fully characterize the entanglement of states of
the form rS. Moreover, these witnesses also provide
a meaningful entropy based measure of multipartite
entanglement [33] and necessary and sufficient condi-
tions for biseparability for our system [31]. Formally,
these witnesses are given by inequalities of the form
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be found. We find regimes where there is entangle-
ment (i) along only a single bipartition of the system,
(ii) on all three bipartitions at the same time, and (iii)
genuine tripartite entanglement, the strongest form of
multipartite entanglement. See [28] for details and
the specific choice of parameters which exhibit these
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the strength of the effect becomes weaker as we make
the constraints stronger, as is intuitively expected. We
comment further on this at the end of this section.
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performance of the refrigerator. For this we consider
the task of cooling a qubit with given energy E1, im-
mersed in a bath at a given temperature TC with fixed
coupling p1. As a source of free energy, we have at our
disposal two heat baths, at temperatures TR and TH
(again assuming that TC < TR < TH). The challenge
is then to adjust the remaining parameters in order to
minimize the temperature of the qubit in its stationary
state. The free parameters are the energy of the hot
qubit E3, the thermalization coefficients for the ma-
chine qubits p2 and p3, and the interaction strength g.
These parameters are not completely free, but all con-
strained. We require that g ⌧ Ei, pj ⌧ Ei, pjg ⌧ g
and pjg ⌧ pj. These constraints can be enforced by
choosing a cutoff for the pj and g. We observe that all
of our conclusions below remain valid independent of
the precise choice of the cutoff. The only change is that
the strength of the effect becomes weaker as we make
the constraints stronger, as is intuitively expected. We
comment further on this at the end of this section.

We first perform the optimization without addi-
tional constraints. That is, among all possible fridges,
we look for the one achieving the best cooling, i.e. the
smallest value of TS. Next, we repeat this optimiza-
tion, but now adding the constraint that no entan-
glement is present in the fridge. More precisely, we
find the optimal cooling (now denoted T⇤

S ), imposing
that the stationary state rS satisfies all the entangle-
ment witness inequalities (7) (and their relevant sym-
metries), hence ensuring separability across every bi-
partition. The results are presented in Fig. (2). We ob-
serve that the cold qubit can be cooled to lower tem-
peratures when no restrictions are placed, compared
to the case when the system is constrained to be sep-
arable. In the regime where TR ⌧ TH , entanglement
provides a significant enhancement in cooling, which
is quantified by the ratio

z =
TC � TS
TC � T⇤

S
. (8)
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efficient function without entanglement. To see this
let us first rewrite rS in the following form

rS = w|GHZihGHZ|+ (1 � w)sdiag (6)
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corresponding to a fully separable state. While there
is no unique notion of entanglement in multipartite
systems, it turns out that the entanglement of states of
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(1 � e)s0

diag + er(p), where s0
diag is a diagonal sepa-

rable state and r(p) = p|GHZ)ihGHZ| + (1 � p) 1
8 .

Since r(p) is fully separable for p  3
11 [27], it follows

that rS is fully separable in the vicinity of any Carnot
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WS (r) = 2

 
|r3,6|� Â

k2S

p
rk,kr9�k,9�k

!
 0 (7)
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Small self-contained quantum thermal machines function without external source of work or con-
trol, but using only incoherent interactions with thermal baths. Here we show that entanglement, the
paradigmatical quantum effect, plays a fundamental role in small self-contained quantum refrigera-
tors, as it can enhance cooling and energy transport – except notably when the efficiency is close to
the Carnot limit. Hence a truly quantum refrigerator can outperform a classical one. Furthermore,
the amount of entanglement alone quantifies the enhancement in cooling. More generally, our work
shows that entanglement opens new possibilities in thermodynamics.

The study of quantum thermal machines has a long
history, from the thermodynamic analysis of lasers [1–
3], to considerable work on quantum cycles and the
second law [4–16, 23]. Recently, models of small self-
contained quantum thermal machines [17–21] have at-
tracted attention. The key feature of such machines
is that they function without any external source of
work or control. Only incoherent interaction with
thermal baths are required. Interestingly, there exist
no fundamental limit on the size of such machines
[17], nor on their efficiency [18]. Their main inter-
est resides in their simplicity, which makes them an
ideal test-bed for exploring quantum thermodynam-
ics. Moreover, practical implementations have been
discussed in various systems [24–26].

An important question which has not been ad-
dressed so far is whether quantum effects play any
significant role in small self-contained thermal ma-
chines. Indeed, although these machines are de-
scribed within the quantum formalism, it is not im-
mediately clear to what extent their working is inher-
ently quantum. One can give an heuristic account of
the functioning of the machine in classical terms.

Here, our aim is to establish the importance of
quantum effects in self-contained quantum thermal
machines. Our main focus will be on the concept of
entanglement, often considered as the defining fea-
ture of quantum theory. Hence, if entanglement turns
out to play an important role in self-contained quan-
tum thermal machines, this would make it clear that
the working of such machines is truly quantum me-
chanical. Moreover, it would then raise the ques-
tion of whether entanglement can enhance the per-
formance of such machines. Below, we address these
questions focusing on the model of the smallest pos-

sible self-contained quantum refrigerator [17, 18]. We
first show that in the regime of high efficiency, that
is machines operating with efficiency close to Carnot
limit, the machine does not feature any entanglement.
Hence, in a sense, entanglement appears to be detri-
mental as far as efficiency is concerned since an entan-
gled state cannot get close to Carnot efficiency. Next,
moving away from the high efficiency regime, we
show that there exist regimes featuring entanglement.
In fact, a wide variety of types of entanglement can be
found in our system—including genuine multipartite
entanglement—depending upon the external condi-
tions. Finally, and most importantly, we show that this
entanglement is useful, as it enhances cooling and en-
ergy transport. Specifically, given an object to cool and
a set of resources (for instance fixing the temperatures
of the heat baths), we show that a refrigerator featur-
ing entanglement can outperform a ’classical’ refrig-
erator (i.e. featuring no entanglement), as it allows to
cool the object to lower temperatures. Moreover, we
demonstrate that the improvement grows monotoni-
cally with entanglement measures, strongly suggest-
ing of a functional relationship.

Quantum fridge model. We start by briefly review-
ing the model of the smallest quantum refrigerator of
Ref. [17, 18], which we will focus on throughout this
work. Let us consider three qubits, which in the ab-
sence of interaction have vanishing ground state ener-
gies and excited state energies Ej (j = 1, 2, 3). The free
Hamiltonian of the refrigerator is thus given by

H0 = E1P1 + E2P2 + E3P3 (1)

where |1ij is the exited state of qubit j, (i.e. energy
eigenstate at energy Ej), and Pj = |1ijh1| denotes
the projector onto that excited state. We also fix a
relationship between the excited state energies of the
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but

strong events. It is straightforward to derive the equa-
tion of motion for the refrigerator using this model of
dissipation [17], which is given by the following Mas-
ter equation

∂r

∂t
= �i[H0 + Hint, r] + Â

i
pi(ti ⌦ Tri(r)� r) (3)

where ti = ri|0iih0|+ (1 � ri)|1iih1| with ri = 1/(1 +
e�Ei/Ti ). In general one would expect there to be ad-
ditional terms in equation (3), corresponding to dissi-
pative dynamics on qubit j originating from the com-
bination of the interaction Hamiltonian and the dis-
sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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The important property of the solution is that it can
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qubits. This interaction takes the form
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We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
be taken to be arbitrarily small while still producing
changes in the steady state behaviour of the refriger-
ator. In this regime, where g ⌧ Ej, the eigenvalues
and eigenstates remain governed by H0. The above
requirements thus impose that E2 = E1 + E3 so that
the states |010i and |101i, connected via the interac-
tion Hamiltonian, become degenerate in energy.

Finally, each qubit is taken to be in contact with a
separate thermal reservoir. The temperatures of the
reservoirs are denoted by TC (cold), TR (room), and
TH (hot), for qubits 1, 2 and 3 respectively. The ther-
mal contact between each qubit and bath is governed
by Linbladian dissipative dynamics, which we model
here using a simple reset model, the justification of
which we shall comment on briefly. In this model,
with probability pidt per time dt, qubit i is reset to the
thermal state ti, at the temperature of its bath, while
for all other times it evolves unitarily according to
the combined Hamiltonian H0 + Hint. That is, in this
model thermalization events are taken to be rare but
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sipative dynamics on qubit i 6= j. In other words,
one may expect each qubit to be effectively in contact
with all three baths due to the interaction Hamilto-
nian [21, 22]. However, when focusing on the regime
where pi ⇡ g ⌧ Ei, these additional effects, whose
strength is approximately gpi ⌧ g can be safely ne-
glected. This setup is depicted schematically in Fig. 1.

Here our focus is on the stationary state (i.e. long
term behaviour) of the refrigerator, rS, which satisfies
ṙS = 0 i.e.
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lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly
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FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
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and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .
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for all other times it evolves unitarily according to
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model thermalization events are taken to be rare but
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ṙS = 0 i.e.

i[H0 + Hint, rS] = Â
i

pi(ti ⌦ Tri(rS)� rS). (4)

As shown in [18], this equation can be solved ana-
lytically for all values of the parameters. The solution
takes the form

rS = t1t2t3 + gs (5)

where g is a dimensionless parameter depending
upon all parameters of the model (namely pi, g, Ei,
and temperatures TC,R,H), and s is a traceless matrix
with a single off-diagonal term (see [18] for details).
The important property of the solution is that it can
be shown that the refrigerator cools qubit 1 whenever
g > 0. In this case, one finds that qubit 1 is in a station-
ary state that is diagonal, with corresponding temper-
ature TS < TC. Moreover, the efficiency of the refrig-
erator tends to the Carnot limit in the limit g ! 0.

Around the Carnot point. Let us first discuss the prop-
erties of rS for those refrigerators which are operating
close to the Carnot efficiency – which from hereon we
refer to as refrigerators around the Carnot point. From
inspection of Eq. (5), it is clear that for g = 0, rS is
a fully separable state, as it is nothing other than the
direct product of thermal state for each qubit. Hence,
no entanglement is present at the Carnot point. More
interestingly, this statement remains true for a small
region within the set of all rS in the vicinity of the
Carnot point. Thus all refrigerators which are highly

2

E2E3

E1

TC

TH TR

FIG. 1. Schematic diagram of the quantum refrigerator. The
fridge contains three qubits (inside the yellow circle), each
in weak thermal contact (wiggly lines) with a bath at a dif-
ferent temperature. The qubits interact via the weak inter-
action Hamiltonian Hint, which couples the two degenerate
levels |010i and |101i, depicted by the arrows. The lower
qubit (purple) is the object to be cooled. At equilibrium, it
reaches a temperature TS < TC. The other two qubits (red
and blue) are the machine qubits, connected to heat baths at
temperatures TR and TH .

free Hamiltonian and place an interaction between the
qubits. This interaction takes the form

Hint = g (|010ih101|+ |101ih010|) . (2)

We require that this interaction Hamiltonian couples
only states within a degenerate subspace of the free
Hamiltonian, such that the coupling constant g can
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