Small self-contained quantum fridges

Nicolas Brunner

Joint work with: Paul Skrzypczyk, Sandu Popescu, Noah Linden, Ralph Silva, Marcus Huber

Grenoble Sep 2014

Design: $E_2 = E_1 + E_3$

Linden, Popescu, Skrzypczyk, PRL 2010; Palao et al, PRE 2001

Proposals for implementation

1. Quadri-Dot Fridge

Venturelli, Fazio, Giovanetti, PRL 2013

- 2. Superconducting qubits Chen, Li, EPL 2012
- 3. Optomechanics Mari, Eisert, PRL 2012

Cooling: when |101> is more populated than |010>

$$e^{-E_1/T_C}e^{-E_3/T_H} > e^{-E_2/T_R}$$
 $E_1 < \frac{E_1}{E_3} < \frac{1 - \frac{T_R}{T_H}}{\frac{T_R}{T_C} - 1}$

Cooling: when |101> is more populated than |010>

$$e^{-E_1/T_C}e^{-E_3/T_H} > e^{-E_2/T_R}$$
 $E_1 < \frac{1 - \frac{T_R}{T_H}}{\frac{T_R}{T_C} - 1}$

Efficiency \rightarrow Carnot limit $\eta^{Q} = \frac{Q_{C}}{Q_{H}} = \frac{E_{1}}{E_{3}} < \frac{1 - \frac{T_{R}}{T_{H}}}{\frac{T_{R}}{T_{C}} - 1}$

No trade-off between size and efficiency!

Skrzypczyk, NB, Linden, Popescu, J Phys A 2012

4-level

4-level

4-level

4-level

 $|101\rangle \iff |010\rangle \qquad = \qquad |10'\rangle \iff |01'\rangle$

Machine places object in thermal contact with a virtual qubit

Virtual temperature

NB, Linden, Popescu, Skrzypczyk, PRE 2013

Virtual temperature

NB, Linden, Popescu, Skrzypczyk, PRE 2013

Quantum effects?

Are there regimes in which the 3-qubits get entangled?

If yes, is this entanglement useful?

Moving away from Carnot point, entanglement can be found

Moving away from Carnot point, entanglement can be found

Steady state

$$ho_S = w |GHZ
angle \langle GHZ| + (1-w)\sigma_{diag}$$
where $|GHZ
angle = (|010
angle + i|101
angle)/\sqrt{2}$

Tools: entanglement witnesses

Guhne, Seevinck NJP 2010, Huber et al. PRL 2010

Moving away from Carnot point, entanglement can be found

Steady state

$$ho_S = w |GHZ
angle \langle GHZ| + (1-w)\sigma_{diag}$$
where $|GHZ
angle = (|010
angle + i|101
angle)/\sqrt{2}$

Tools: entanglement witnesses

Guhne, Seevinck NJP 2010, Huber et al. PRL 2010

Moving away from Carnot point, entanglement can be found

Steady state

$$ho_S = w |GHZ
angle \langle GHZ| + (1-w)\sigma_{diag}$$
where $|GHZ
angle = (|010
angle + i|101
angle)/\sqrt{2}$

Tools: entanglement witnesses Guhne, Seevinck NJP 2010, Huber et al. PRL 2010

Does this entanglement play any role?

Consider: (i) object (qubit 1) to be cooled (fix E, T_C)

(ii) resources: hot bath T_H and cold bath T_R

Consider: (i) object (qubit 1) to be cooled (fix E, T_C)

(ii) resources: hot bath T_H and cold bath T_R

What is the **lowest temperature** to which the qubit can be cooled?

Consider: (i) object (qubit 1) to be cooled (fix E, T_C)

(ii) resources: hot bath T_H and cold bath T_R

What is the **lowest temperature** to which the qubit can be cooled?

Case A: **entanglement** is allowed Lowest temp = T_s

Consider: (i) object (qubit 1) to be cooled (fix E, T_C)

(ii) resources: hot bath T_H and cold bath T_R

What is the **lowest temperature** to which the qubit can be cooled?

Case A: **entanglement** is allowed Lowest temp = T_s Case B: **separability** is enforced Lowest temp = T_s^*

Consider: (i) object (qubit 1) to be cooled (fix E, T_C)

(ii) resources: hot bath T_H and cold bath T_R

What is the **lowest temperature** to which the qubit can be cooled?

Case A: **entanglement** is allowed Lowest temp = T_S Case B: **separability** is enforced Lowest temp = T_S^*

Relative cooling enhancement
$$\zeta = \frac{T_C - T_S}{T_C - T_S^*}$$

If $\zeta > 1$ entanglement helps!

Entanglement helps

NB, Huber, Linden, Popescu, Silva, Skrzypczyk, PRE 2014

Functional relationship?

Amount of entanglement determines cooling enhancement

NB, Huber, Linden, Popescu, Silva, Skrzypczyk, PRE 2014

Remarks

1. Which qubits get entangled?

Energy IN / Energy OUT

Entanglement enhances transport

2. Steady state entanglement in open quantum system

Open questions

- Beyond weak coupling regime
- Other models
- Macroscopic fridges
- Heat engines
- Other quantum effects. Bath?

THE MODEL

FREE HAMILTONIAN

 $H_0 = E_1 \Pi_1 + E_2 \Pi_2 + E_3 \Pi_3$

WITH $E_2 = E_1 + E_3$

INTERACTION

 $H_{int} = g\left(|010\rangle\langle101| + |101\rangle\langle010|\right)$

THERMALISATION

 $p_i \rightarrow \text{RESET QUBIT TO THERMAL STATE } \tau_i$ $\tau_i = r_i |0\rangle_i \langle 0| + (1 - r_i) |1\rangle_i \langle 1|$ $r_i = 1/(1 + e^{-E_i/T_i})$ **WEAK COUPLING REGIME** $p_i \approx g \ll E_i$